


The IL is a symbolic technique, which uses supervised learning and generates a set of “if-then-else” decision rules. A method [97] is based on an algorithm called “hierarchical mutual information classifier” [92,103]. This algorithm produces a decision tree by maximizing the average mutual information at each partitioning step. It uses Shannon’s entropy as a measure of information. Mutual information is a measure of the amount of information that one random variable contains about another random variable. It is a reduction of the uncertainty of one random variable due to the knowledge of the other. An effective method of integrating results of a mutual information algorithm into a production rule formalism, following the original work of Watanabe [100] and Pitas [111], was done by Nikolic´ [112]. While generating the decision tree, the algorithm performs a hierarchical partitioning of the domain multidimensional space. Each new node of the decision tree contains a rule based on a threshold of one of the input signals. Each new rule further subdivides the example set. The training is finished when each terminal node contains members of only one class. An excellent feature of this algorithm is that it determines threshold automatically based on the minimum entropy. This minimum entropy method is equivalent to determination of the maximum probability of recognizing a desired event (output) based on the information from input.
Radial basis function (RBF) network is a feed-forward network. The RBF has a single output node and a single hidden layer which contains as many neurons as are required to fit the function within the specifications of error goal. The transformation from the input space to the hidden-unit space is nonlinear, whereas the transformation from the hidden-unit space to the output space is linear. A common learning algorithm for RBF networks is based on first choosing randomly some data points as radial basis function centers and then using singular value decomposition to solve for the weights of the network. An arbitrary selection of centers may not satisfy the requirement that centers should suitably sample the input domain. Furthermore,  in order to achieve a given performance, an unnecessarily large RBF network may be required. Since a performance of an RBF network critically depends upon the chosen centers, we used an alternative learning procedure based on the OLS learning algorithm [101]. By providing a set of inputs and corresponding outputs, the values of weights and bias, and RBF centers (parameters for RBF network) can be determined using the OLS algorithm in one pass of the learning data so that a network of an adequate size can be constructed.
When an input vector is presented to such a network, each neuron in the hidden layer will output a value according to how close the input vector is to the centers vector of each neuron. The result is that neurons with centers vector are very different from the input vector will have outputs near zero. These small outputs will have a negligible effect on the linear output neurons. In contrast, any neuron whose centers vector is very close to the input vector will output a value near 1. If a neuron has an output of 1, its output weights in the second layer pass their values to the neuron in the second layer. The width of an area in the input space to which each radial basis neuron responds can be set by defining a spread constant for each neuron. This constant should be big enough to enable neurons to respond strongly to overlapping regions of the input space. The same spread constant is usually selected for each neuron.
15.6    Hybrid Modeling  of Controllers
Feedback error learning (FEL) is a hybrid technique [113] using the mapping to replace the estimation of parameters within the feedback loop in a closed-loop control scheme. FEL is a feed-forward neural network structure, under training, learning the inverse dynamics of the controlled object. This method is based on contemporary physiological studies of the human cortex [114], and is shown in Figure 15.6.

The total control effort u applied to the plant is the sum of the feedback control output and network control output.  The ideal configuration of the neural network would correspond to the inverse math- ematical model of the system’s plant. The network is given information of the desired position and its derivatives, and it will calculate the control effort necessary to make the output of the system follow the desired trajectory. If there are no disturbances the system error will be zero.

The configuration of the neural network should represent the inverse dynamics of the system when training is completed. It was prudent to use a total energy approach as basis for the neural network, because
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FIGURE 15.6   Model for the hybrid modeling of controllers using feedback error learning algorithm. The inclined arrow represents the learning.
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FIGURE 15.7   Scheme of the feedback error learning controller used for the one degree of freedom system. See text for details.

only the commanded input and its first derivative is required for the FEL controller. By comparison, if the FEL were based on the mathematical model, the second derivative would be needed for the neural network to operate [115].

Figure 15.7 depicts a more in-depth explanation of the FEL strategy. The system input and output are labeled θd and θ . The proportional-plus-derivative (PD) feedback controller is included to provide stability during training of the neural network [114,116–118]. Enclosed in the dashed rectangle is an FEL controller, which outputs the necessary control signal, based on the desired inputs. The total energy of the system (nn) is calculated through parallel processing within the neural network, consisting of the functionals (A,B,C, .. .) obtained from the total energy expression, the synaptic weights wi , wj , and wk . In addition to the above-mentioned synaptic weights, wl is associated with damping losses. The training of the FEL controller is facilitated by changing the synaptic weights based on the output from a PD controller. The learning rule used, was proposed by Kawato et al. [119] and it is given as follows:

winew = wiold + uPD Aη t
where winew  is the new value of the synaptic weight, wiold  is the old value, uPD  is the output from the
PD controller, A is the network functional associated with weight wi , η is the learning rate, and    t is

the integration step used in the computer simulation. A learning rate is included to control the rate of growth of the synaptic weights. The learning rule, as proposed by Kawato et al. [113], is based on the assumption of slow growth of the synaptic weights. The weights are initialized at zero, and the learning rates adjusted so the growths of the weights are uniform. This causes the weights to reach their final value at the same point in time, causing the error to approach zero. Subsequently, the learning as a function of error will level off, and the training of the neural network will be completed. However, if the growth of the weights is not homogeneous, it will result in an unbounded growth of the weights. The vertical line in Figure 15.7 pointing upward through wi , wj , wk , and wl symbolizes the learning. After the total energy is calculated, the time derivative is taken and divided by the desired velocity. The losses are calculated by multiplying the desired velocity by the weight wl , and are then added to the control signal. Finally, the control effort from the FEL controller is added to the PD control effort.

In essence, the output of the feedback controller is an indication of the mismatch between the dynamics of the plant and the inverse-dynamics model obtained by the neural network. If the true inverse-dynamic model has been learned, the neural network alone will provide the necessary control signal to achieve the desired trajectory [118,120].

Deﬁning Terms
Actuator:    Device that power a system.

Artificial reflex control:   Expert system using rule-based control.
Closed-loop system:   Control system which uses information about the output to correct the control parameters to minimize the error between the desired and actual trajectory.

Controls:   The signals driving the actuators.

Controller:    Process by which the controls are generated.

Degree of freedom:   Independent variable defining the position. A free rigid body has six degrees of freedom, a ball joint three, and a hinge joint one.
Dynamic analysis:  Analytic simulation of movements of the system considering forces, torques, and kinematics. Forward dynamics uses the geometry and kinematics as input, and provides forces and torques as outputs; inverse dynamics starts from forces and torques and determines kinematics and geometry of the system.

Hierarchical control:   Multilevel control allowing the vertical decomposition of the system.

Kinematic analysis:  Analytic simulation of movements of the system considering positions, velocities, and accelerations.

Kinematic pair:    Connection of two neighboring segments.

Nonanalytic control:   Mappings between inputs and outputs to be used for control.
Open-loop control:   Control method that uses a prestored trajectory and the model of the system to control the plant.
Plant:   The mechanical system being controlled.
Production rule:   “If–Then” conditional expression used in experts systems.

Reference-based open-loop control:   Control which precomputes and stores control signals, and execute the desired motor task in real-time.

Rigid body:    Set of material points with the distances between points being fixed.

State:   The configuration of the system at any instant in time.
Trajectory:    The time histories of the plant states in response to the control signals.
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16.1    Introduction
In this section, a broad overview of the fast eye movement control system is presented. A fast eye movement is usually referred to as a saccade, and involves quickly moving the eye from one image to another image. This type of eye movement is very common and is observed most easily while reading — when the end of a line is reached the eyes are moved quickly to the beginning of the next line. A qualitative description of the fast eye movement system is given first in the introduction and then followed by a brief description of saccade characteristics. Next, the earliest quantitative saccade model is presented and then followed by more complex and physiologically accurate models. Finally, the saccade generator, or saccade controller is then discussed on the basis of anatomical pathways and control theory. The purpose of this review is focused on mathematical models of the fast eye movement system and its control strategy, rather than on how visual information is processed. The literature on the fast eye movement system is vast, and thus this review is not exhaustive, but rather a representative sample from the field.

The oculomotor system responds to visual, auditory, and vestibular stimuli, which results in one of five types of eye movements: fast eye movements, smooth pursuit eye movements, vestibular ocular movements, vergence eye movements, and optokinetic eye movements. Each of these movements is
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