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Introduction

For the sake of continuity, we give a brief background of the difficulties in numerical eval-
uation of Hankel transform and construct an efficient and stable algorithm for its numerical
evaluation and apply it to solve the realistic problem of inverse quasi-static steady-state ther-
mal stresses in a thick circular plate, which is subjected to arbitrary interior temperature and
determine the unknown temperature and thermal stresses.

The Hankel Transform

The general Hankel transform pair for Bessel function of order ν is defined as [1,2]

Hν[ f (r); p] =
∞∫

0

r f (r)Jν(pr)dr = Fν(p). (1)

Hankel Transform is self reciprocal; its inverse is given by

H−1
ν [Fν(p); r ] =

∞∫

0

pFν(p)Jν(pr)dp = f (r), (2)

where Jν is the ν th-order Bessel function of first kind.
Several quality research articles have been published for the evaluation of Hankel trans-

form. Analytical evaluations of (1) and (2) are rare and their numerical computations are
difficult because of the oscillatory behaviour of the Bessel functions and infinite length of
the interval involved in it. The efficiency of a method for computing HT is highly dependent
on the function to be transformed and thus it is very difficult to choose an optimal algorithm
for given function.

Postnikov [3], proposed for the first time, a novel and powerful method for computing
zero and first order HT by using Haar wavelets. Refining the idea of Postnikov [3], Singh et
al. [4–6] obtained three efficient algorithms for numerical evaluation of HT of order ν > −1.
All these algorithms depend on separating the integrand r f (r) Jν(pr) into two components;
the slowly varying components r f (r) and the rapidly oscillating component Jν(pr). Then
either r f (r) is expanded into various wavelet series using different orthonormal bases like
Haar wavelets, linear Legendre multiwavelets, Fourier Bessel series and truncating the series
at an optimal level or approximating r f (r) by a quadratic over the subinterval using the Filon
quadrature philosophy [7].

In this manuscript, we take an entirely different approach. Instead of manipulating the
simpler component r f (r), we manipulate the rapidly oscillating part Jν(pr), thus avoiding
the complexity of evaluating integrals involving Bessel functions. We use the hat basis func-
tions described in “Hat Functions and Their Associated Properties” section, to approximate
Jν(pr) and replace it by its approximation in Eq. (1), thereby getting an efficient and stable
algorithm for the numerical evaluation of the HT of order ν > −1. In “Algorithm” section,
we derive the algorithm and further give the error and the stability analysis in “Error and
Stability Analysis” section. A numerical experiment to verify our theoretical findings is also
provided in “Error and Stability Analysis” section. In “The Main Result” section, we apply
our proposed algorithm to solve the realistic problem of inverse quasi-static steady-state ther-
mal stresses in a thick circular plate, which is subjected to arbitrary interior temperature and
determine the unknown temperature and thermal stresses on the upper surface of the thick
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circular plate, where the fixed circular edge and the lower surface of the circular plate are
thermally insulated.

Hat Functions and Their Associated Properties

Hat functions are defined on the domain [0, 1] . These are continuous functions with shape of
hats, when plotted on two dimensional plane. The interval [0, 1] is divided into n subintervals
[ih, (i + 1)h] , i = 0, 1, 2, . . . , n − 1, of equal lengths h where h = 1

n . The hat function’s
family of first (n + 1) hat functions is defined as follows [8]:

ψ0 (t) =
{

h−t
h , 0 ≤ t < h,

0, otherwise,
(3)

ψi (t) =

⎧⎪⎪⎨
⎪⎪⎩

t−(i−1)h
h , (i − 1)h ≤ t < ih,

(i+1)h−t
h , ih ≤ t < (i + 1)h, i = 1, 2, . . . , n − 1,

0, otherwise,

(4)

ψn (t) =
{

t−(1−h)
h , 1 − h ≤ t ≤ 1,

0, otherwise.
(5)

From the definition of hat functions it is obvious that

ψi (kh) =
{
1, i = k,

0, i �= k,
(6)

The hat functions ψ j (t) are continuous, linearly independent and are in L2 [0, 1].
A function f ∈ L2[0, 1] may be approximated as

f (t) �
i=n∑
i=0

fiψi (t) = f0ψ0(t) + f1ψ1(t) + f2ψ2(t) + · · · + fnψn(t). (7)

The important aspect of using extended hat functions in the approximation of function f (t),
lies in the fact that the coefficients fi in the Eq. (7), are given by

fi = f (ih), for i = 0, 1, 2 . . . , n where h = 1/n. (8)

Algorithm

To derive the algorithm, we first assume that the domain space of input signal f (r) extends
over a limited region 0 ≤ r ≤ R. From physical point of view, this assumption is reasonable
due to the fact that the input signal f (r) which represents the physical field is either zero
or it has an infinitely long decaying tail out side a disc of finite radius-R. Therefore, in
many practical applications either the input signal f (r) has a compact support or for a given
ε > 0 there exists a positive real R such that

∣∣∫∞
R r f (r)Jν(pr)dr

∣∣ < ε, which is the case if
f (r) = o(rλ), where λ < − 3

2 as r → ∞ . Hence in either case, from Eq. (1), we have

Ĥν[ f (r); p] =
R∫

0

r f (r)Jν(pr)dr ≡ F̂ν(p). (9)
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By scaling (9) may be written as

F̂ν(p) =
1∫

0

r f (r)Jν(pr)dr , (10)

which is known as finite Hankel transform (FHT). Equation (9) is a good approximation of
the HT given by (2). Using Eqs. (7) and (8), Jν(pr) may be approximated as

Jν(pr) �
n∑

i=0

Jν(pih)ψi (r). (11)

Using the approximation in (11), we get the algorithm to evaluate the Hankel transform as

F̂ν(p) �
1∫

0

r f (r)
n∑

i=0

Jν(pih)ψi (r)dr

=
n∑

i=0

Jν(pih)

1∫

0

r f (r)ψi (r)dr

= Jν(0)

h∫

0

r f (r)ψ0(r)dr +
n−1∑
i=1

Jν(pih)

(i+1)h∫

(i−1)h

r f (r)ψi (r)dr

+ Jν(p)

1∫

1−h

r f (r)ψn(r)dr. (12)

It is note worthy here that the integral
∫ 1
0 r f (r)ψi (r)dr appearing in Eq. (12), may be easily

calculated as f (r) is known function and ψi (r) is a linear polynomial ∀i .

Error and Stability Analysis

Let the R.H.S. of (11) is denoted by Jν,n(pr) i.e.

Jν,n(pr) =
n∑

i=0

Jν(pih)ψi (r). (13)

Now replacing Jν(pr) in Eq. (10), we define an nth approximate F̂ν,n(p) of the FHT F̂ν(p)
as follows:

Definition 4.1 An nth approximate finite Hankel transform of f (r), denoted by F̂ν,n(p) is
defined as

F̂ν,n(p) =
∫ 1

0
r f (r)Jν,n(pr)dr =

n∑
i=0

Jν(pih)

∫ 1

0
r f (r)ψi (r)dr . (14)

Let εn(p) denote the absolute error between the FHT F̂ν(p) and its nth approximate F̂ν,n(p),
then we have the following:
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Theorem 4.1 If Jν(pr) is approximated by the family of first (n + 1) hat functions as given
in Eq. (11), then

(i)
∣∣Jν(pjh) − Jν,n(pjh)

∣∣ = 0, for j = 0, 1, 2, . . . , n.

(ii)
∣∣Jν(pr) − Jν,n(pr)

∣∣ ≤ p2

2n2
+O

(
p3

n3

)
, for jh < r < ( j+1)h, j = 0, 1, 2, . . . , n−1.

(iii) εn(p) = ∣∣F̂ν(p) − F̂ν,n(p)
∣∣ ≤ Mp2

4n2
+ O

(
p3

n3

)
, where | f (r)| ≤ M.

Proof See the Appendix 1.
The stability of the proposed algorithm is analyzed under the influence of noise. In what

follows, the exact data function is denoted by f (r) and the noisy data function f α(r) is
obtained by adding a random noise α to f (r) such that f α(r) = f (r) + αθ , where θ is
a uniform random variable with values in [−1, 1] such that | f α(r) − f (r)| ≤ α. Then we
have: 
�

Theorem 4.2 When the input signal f (r) is corrupted with noise α, the proposed algorithm
reduces the noise at least by a factor of 1/2 in the output data F̂ν,n.

Proof See Apendix 2.
A test problem included in this section is solved with and without random perturbations

(noises) to illustrate the efficiency and stability of proposed algorithm by choosing three
different values of noise α as α0 = 0, α1 = 0.002 and α2 = 0.005.

The errors E j (p) (= the approximate FHT obtained from Eq. (12) with random noise
α j−the exact FHT), j = 0, 1, 2 are computed and their graphs are sketched, for different
n. Further the parameter p ranges between 0 to 30 in steps of 0.2. Figure 3 depicts the
graph of

∣∣F̂α
ν,n(p) − F̂ν,n(p)

∣∣ for the test function in example, which is in conformity with
the Theorem 4.2. For this illustration, the computations are done in MATLAB 7.0.1 and
the elapsed times in computations of FHT by CPU for MATLAB codes, are found to be
0.140, 0.593, 4.961 and 69.545 s for n=100, 1000, 10,000 and 100,000 respectively. The
least square errors

∥∥E j (p)
∥∥
2 involved in computations of approximate FHT with noises

α j , j = 0, 1, 2 for the given example with n =10,000, are 1.0554E − 08, 1.0554E − 08
and 1.0554E − 08. These are calculated, using the formula

∥∥E j (p)
∥∥
2 =

√√√√√
n∑

i=0
E2

j (pi )

n + 1
,

where pi is taken in steps of 0.2 in the range [0, 30]. 
�

Example Consider the function f (r) = (
r2 − a2

)2
given in [9], whose zero order finite

Hankel transform is given by F0(p) = 8a
{(
8−a2 p2

)
J1(pa)−4apJ0(pa)

}
p5

.

For numerical computation, we take a = 1 to show comparison between exact HT F0(p)
and nth approximate FHT F̂0,n(p), in Fig. 1. The errors E0(p),E1(p) and E2(p) for n = 100
are shown in Fig. 2. Further Fig. 3 depicts the graph of

∣∣F̂α
0,n

(p) − F̂0,n(p)
∣∣, for noises

α = 0.002, 0.005 and random variable θ = 0.2311. Again it is to be noted here that in the
caption of Fig. 3,

∣∣F̂α
0,n

(p) − F̂0,n(p)
∣∣ is denoted by ∣∣Hα

0 (p) − H0(p)
∣∣.
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