116 Chapter 4

where SS(',nill represents a minimum time-lag between the start time of
activity i and the start time of activity j (similar definitions apply for SS;™*,

FS;;" ", ...), 8ydenotes the start time and fj denotes the finish time of activity

i

2.1 GPRs in standardised form

The GPRs can be represented in standardised form by transforming them
to, for instance, minimal start-start precedence relations, using the following
transformation rules (Bartusch et al. (1988)):

s+8S"<s;, = s+l <s;  with [, =SS
5;+8S;™ 2s; = s;+l;<s;  with [, =-S5

Si+SFymnS.fj si+lyssj with lU=SF;1in—dj

=
s;+SFM™ 2 f, = s, +1;<s;  with [, =d,-SF™
f+FS{"<s, = s+l;<s; with I, =d,+FS"
[i+FS™2s; = s;+l;<s,  with [, =—d, ~ F§™
fi+FFM < f = s+l,<s; with [, =d,—d, +FF™
L+FF™2f, = s;+l;<s; with I, =d,~d,~FF™.

The interval [s; +;,s,-1;] is called the time window of s; relative to s;

(Bartusch et al. (1988)). Let us borrow from De Reyck (1998) the example
activity network given in Figure 64. The numbers above the nodes
(activities) denote the activity durations d;. The labels associated with the
arcs indicate the GPRs. The bold edges indicate the critical paths (cf. infra).
Applying the transformations to this network example results in the activity
network in standardised form given in Figure 65. Now the labels associated
with the arcs indicate the time-lags Iy If there is more than one time-lag Iy
between two activities i and j, only the maximal time-lag is retained. The
resulting network is called the constraint digraph, which is short for digraph
of temporal constraints (Bartusch et al. (1988)).

It should be noted that activity networks with GPRs may contain cycles.
A path <, it @, ..., i> is called a cycle if s = t. ‘Path’ refers to a directed
path; ‘cycle’ refers to a directed cycle. The length of a path (cycle) in a
standardised project network is defined as the sum of all the lags associated
with the arcs belonging to that path (cycle). To ensure that the dummy start
and finish activities correspond to the start and the completion of the project,
we assume that there exists at least one path with nonnegative length from



4. TEMPORAL ANALYSIS: THE BASIC DETERMINISTIC CASE 117

node 1 to every other node and at least one path from every node i to node n
which is equal to or larger than d;. If there are no such paths, we can insert
arcs (1,0) or (i,n) with weight zero or d;respectively.

P={k|(kD)EE]) is the set of immediate predecessors of node i in graph
G=(V,E), S={k|(i,k)e E} is the set of all its immediate successors. If there
exists a path from i to j, then we call i a predecessor of j and j a successor of
ii P'G) and S'() denote the set of (not necessarily immediate)
predecessors and successors of node i respectively. If the length of the
longest path from i to j is nonnegative, i is called a real predecessor of j, and
j is called a real successor of i. Otherwise it is a fictitious one.

Figure 65. The constraint digraph (De Reyck (1998))



118 Chapter 4

2.2 Computing the earliest start schedule

A schedule S = (51,52...,8,) is called time-feasible, if the activity start
times satisfy the following conditions:

5,20 VieV [4.24]

s;+1; < V(@i,j)e E [4.25]

where Eqs. [4.24] ensure that no activity starts before the current time (time
zero) and Eqgs. [4.25] denote the GPRs in standardised form.

The resource-unconstrained project scheduling problem with GPRs under
the minimum makespan objective (classified as problem gpr{Cuax following
the conventions of Chapter 3) can be mathematically formulated as follows:

min s, [4.26]
subject to
s;+l; <s; V(@i,j)e E (4.27]
s;€eIN ieV {4.28]

The objective is to minimise the project duration (makespan). As shown
in Eq. [4.26], this corresponds to minimising the completion time (or start
time, since d,=0) of the dummy end activity n. Constraints [4.27] represent
the GPRs. Constraints [4.28] ensure that all activity start times assume
nonnegative integer values. Solving problem gpr{Cuax can be accomplished
by computing a time-feasible earliest start schedule (ESS), i.e. the minimum
start times (esy,ess,...,e8,) satisfying both Eqs. [4.27] and [4.28]. For the
example of Figure 65, ESS = (0, 0, 2, 2, 8, 3,9, 10, 11, 16).

The earliest start of an activity i can be calculated by finding the longest
path from node 1 to node i. The calculation of an earliest start schedule
(ESS) can be related to the test for existence of a time-feasible schedule. A
time-feasible schedule for G exists iff G has no cycle of positive length
(Bartusch et al. (1988)). Such cycles would unable us to compute start times
for the activities which satisfy conditions [4.27] and [4.28]. Therefore, if we
compute the longest path matrix IT= [ ], where 74 denotes the longest path
length from node i to node j, a positive path length from node i to itself
indicates the existence of a cycle of positive length, and consequently, the
non-existence of a time-feasible schedule. In the literature (Bartusch et al.
(1988)), the matrix f7is often referred to as the distance matrix.

The computation of the matrix 17 can be performed by standard graph
algorithms for computing longest paths in networks. The Floyd-Warshall

algorithm, for example, is of time complexity O(n®) (see e.g. Lawler (1976)).

The possible existence of cycles should be taken into account. Let n'f,"’



4. TEMPORAL ANALYSIS: THE BASIC DETERMINISTIC CASE 119

represent the length of a longest path from node i to node j subject to the

condition that this path uses only the nodes 1, 2, ..., k-1 as internal nodes.
Clearly, 72‘((,"“) represents the actual longest path distance from node i to

node j. If we start with the matrix IT = [ﬂé"}(i,j =1,2,...,n) with
0 if i=j
P =i, VG)EE

—oo Otherwise

we can compute the matrix /7= IF*? according to the updating formula
”i(jkn) =max ,y‘) ,It,(,f) +7t,§,k) } If =0 for all i=1,2,...,n (the numbers in the
diagonal of [7), there exists a time-feasible schedule. The ESS is given by the

numbers in the upper row of IF. ESS=(74, M2, Mi3y. .., Mp). The matrix I7for
the problem example is found to be the following:

[0 0 2 2 8 3 9 10 11 16
—o 0 ~4 2 2 3 4 6 T 12
—2 -2 0 0 6 1 7 8 9 14
o -2 -6 0 0 1 2 4 5 10
ol -8 -8 -6 0 -5 1 2 3 8
—0 -5 -9 -3 -3 0 -1 1 2 7
o -9 -9 -7 -3 -6 0 1 2 7
— ~10 -10 -8 -4 =7 -2 0 1 6
—o ~11 -12 ~9 -6 -8 =3 -2 0 5
-0 =17 =17 -15 -11 -14 -8 =7 -6 O

A 7y value equal to -eo represents the non-existence of a path from
activity i to activity j. The zeroes in the diagonal indicate the existence of a
time-feasible schedule.

The ESS can be computed more efficiently by using the Modified Label
Correcting Algorithm (Ahuja et al. (1989)), which is of time complexity
O(VIIE]). A label correcting algorithm is iterative and assigns tentative
distance labels to nodes at each step. The distance labels are estimates of (i.e.
lower bounds on) the longest path distances and are considered as temporary
until the final step where #; is the longest path length from the source node

1 to node j. The algorithm maintains a LIST of nodes with the property that if
there is an arc (i) for which 7; <7, +1; then LIST must contain node i. The

algorithm runs as follows:



120 Chapter 4

Step 1. Set the distance labels for the nodes as follows: 7, =0; 77 ; = —co

for j = 2,3,...,n. Initialise the list of nodes LIST= [1].

Step 2. If LIST is empty, go to Step 5. Select the first node i from LIST.
Delete i from LIST.

Step 3. If i has no uncorrected successors (successors for which the
distance label has not been corrected), go to Step 2. Otherwise, select an
arbitrary uncorrected successor j of i.

Step 4. m; =max{zm;,7; +1;}. If the distance label #; has changed and

Jj& LIST, add nodej to the end of LIST and go to Step 3.

Step 5. Stop.

The algorithm assumes the presence of a single starting node to start the
calculations in Step 1. In general, this poses no problem given our
assumption that the network contains a single dummy start and end node.

Let us illustrate the algorithm on the simple constraint digraph of Figure

66.

Figure 66. An example constraint digraph

Step 1. 7, =0; 7, = oo for i =234; LIST=[1].

Step 2. Selectnode 1 from LIST; LIST=([].

Step 3. Select node 2 as a successor node of node 1.

Step 4. 7y = max{m,; 7, +1,} = max{—e;0+2}=2; LIST=[2].
Step 3. Select node 3 as a successor of node 1.

Step 4. 703 = max(73; 7, + 13} = max{—o;0 +4} = 4; LIST=[2,3].
Step 3. No uncorrected successors left.

Step 2. Select node 2 from LIST; LIST=[3].

Step 3. Select node 4 as a successor node of node 2.

Step 4. m, =max{z,; 7, +1,,} = max{—o0;2 +4} = 6; LIST=[3,4].
Step 3. No uncorrected successors left.

Step 2. Select node 3 from LIST; LIST=[4].

Step 3. Select node 1 as a successor node of node 3.



4. TEMPORAL ANALYSIS: THE BASIC DETERMINISTIC CASE 121

Step 4. 7y =max{m; 7, +1;, } = max{0;4—6} =0.

Step 3. Select node 4 as a successor of node 3.

Step 4. 7, = max{z;7m; + 1, } = max{6;4 +3} =7, LIST=[4].

Step 3.No uncorrected successors left.

Step 2. Select node 4 from LIST; LIST=[].

Step 3. No uncorrected successors left.

Step 2. LIST is empty.

Step 5. Stop.

The corresponding early start schedule is obtained as ESS=(0, 2, 4, 7). We
leave it as an exercise for the reader to apply the algorithm to the constraint
digraph of Figure 65.

A latest allowable start schedule (LSS) can be computed by a similar
method, based on the network with all arcs reversed and with the condition
that es,=ls,. Note that for calculating the LSS, the maximal time-lags
between activities have to be taken into account.

23 Activity criticality in activity networks with GPRs

The notions of critical paths and activity floats studied earlier have to be
modified when used for activity networks with GPRs. A critical path is still
the longest path from node 1 to node n. All the activities on this longest path
are called critical. For the standardised example of Figure 65, there are four
critical paths (indicated in bold), namely <1-3-5-8-10>, <1-3-5-8-9-10>, <I-
3-5-7-8-10> and <1-3-5-7-8-9-10>. The length of each of these critical paths
equals 16.

23.1 Cycles and tree structures

In a standardised project network with GPRs, a critical path may contain
cycles, provided they are of length zero. When determining the critical
path(s) in nonstandardised networks with GPRs, the maximal time-lags
require special attention. A critical path may not be a path in the strict sense,
but rather be a tree structure, because it may include an activity connected
with a minimal and maximal time-lag in the same direction, ensuring that the
start or completion of the activity should be exactly equal to the start or
finish of a predecessor plus a certain time-lag. The critical path will always
contain a chain from the start to the end activity, but it can contain several
branches connected to this chain. De Reyck (1998) provides the example of
Figure 67 to illustrate this point.



122 Chapter 4

SSmin(5)

FSmin(Q)
FSmin(5)
10 FSmin(10)

SSmin(s)

ESO) 15 FSmin(3)

FSmax(3)

Figure 67. A project network with GPRs (De Reyck (1998))

Figure 68 shows the standardised version of the network in Figure 67,
with the critical paths indicated in bold. The longest path from source to sink
in the network of Figure 68 has a length of 50, being the critical path length.
There are, however, several different critical paths, amongst others
<1,3,6,8>, <1,3,2,3,6,8>, <1,3,4,3,6,8> and <1,3,4,7,4,3,6,8>. The last three
paths contain a cycle. Only activity 5 is non-critical. The critical path in the
non-standardised project network of Figure 67 contains several branches and
has the shape of a tree rather than a path.

Figure 68. A standardised project network

However, transforming the maximal time-lags into minimal ones (while
still distinguishing between the four types of precedence relations), yields



4. TEMPORAL ANALYSIS: THE BASIC DETERMINISTIC CASE 123

multiple critical paths which do not exhibit a tree structure, as shown in
Figure 69. We alert the reader for the fact that criticality analysis should be
performed with extreme care when GPRs with maximal time-lags come into
play. Therefore, we agree with the argument of De Reyck (1998) who
advises that a temporal analysis should be performed on project networks in
which the maximal time-lags are transformed into minimal ones in the
opposite direction. The constraint digraph should not be used for criticality
analysis since it does not correctly represent the impact of altering activity
durations on the earliest start schedule or on the total project duration.

SS“‘i“(S) 30

FSmin(5)
10 Fsmm(lo)

FSmin(()

SEmin_3)

Figure 69. A project network with minimal time-lags

2.3.2 Types of criticality

In traditional CPM terminology, an activity is considered to be critical if
delaying that activity causes a project delay. This implies that an increase of
the duration of a critical activity results in an increase of the project duration
with the same amount. This is not always the case when the project network
contains GPRs. In such networks, delaying a critical activity will always
result in an equal increase in the project duration, but a duration increase of
a critical activity will not always lead to an increase in the duration of the
project. In the example of Figure 69, delaying critical activity 3 with one
time unit will result in a unit increase in the duration of the project.
However, a unit increase in the duration of activity 3 will not cause a project
delay at all. This is due to the fact that the (minimal) time-lags of the critical
path(s) containing activity 3 are of the SS- and FS-type for its (immediate)
predecessors, and are of the SS- or SF-type for its (immediate) successors.
Therefore, only the start of activity 3 really matters and should not be



124 Chapter 4

delayed in order to avoid a project delay, whereas the finish of activity 3 has
some float. Actually, as we will explain below, activity 3 is start-critical:
increasing its duration does not affect the project duration, delaying its start
leads to a project duration increase.

Elmaghraby and Kamburowski (1992) distinguish between different
criticality types. The following definitions apply. An activity is labelled:

e  (ritical when it is located on a critical path;

e Start-critical if (a) it is critical, and (b) if the project duration

increases when the start time of the activity is delayed;

e Finish-critical if (a) it is critical, and (b) if the project duration
increases when the finish time of the activity is delayed;

s Forward-critical (described as normal-critical by Hajdu (1997)) if (a)
it is start-critical, and (b) when the project duration increases when
the activity’s duration is increased;

®  Backward-critical (described as reverse-critical by Hajdu (1997)) if
(a) it is finish-critical, and (b) when the project duration increases
when the activity’s duration is decreased;

e Bi-critical if (a) it is start- and finish-critical, and (b) when the
project duration increases when the activity’s duration is either
increased or decreased.

The criticality type of an activity can be determined by looking at the
precedence relations originating from all critical activities leading to the
activity in question and originating from the activity to all other critical
activities. Table 6 relates the criticality type of a critical activity to the time-
lag between the activity and its (immediate) predecessors and (immediate)
successors. The second column of Table 7 shows the criticality type for the
critical activities of the project network of Figure 64.

Table 6. Five types of criticality (De Reyck (1998))

Minimal time-lag between Minimal time-lag between
all critical activities in the set  activity i and all critical
of predecessors of activity i activities in the set of its

of type successors of type
Start-critical SSor FS SFor SS
Finish-critical SF or FF FFor FS
Forward-critical SSor FS FSor FF
Backward-critical SF or FF SFor §S

Bi-critical (SS or FS) and (SF or FF) (FS or FF) and (SF or SS)




4. TEMPORAL ANALYSIS: THE BASIC DETERMINISTIC CASE 125

Table 7. Activity criticality and flexibility for the problem example of Figure 64 (De Reyck
(1998))

Activity Criticality Flexibility
1 start-critical bi-inflexible
2 non-critical backward-inflexible
3 start-critical bi-flexible
4 non-critical forward-inflexible
5 backward-critical backward-inflexible
6 non-critical bi-flexible
7 finish-critical bi-flexible
8 bi-critical bi-inflexible
9 forward-critical forward-inflexible
10 forward-critical bi-inflexible

24 Activity flexibility in activity networks with GPRs

As mentioned by Elmaghraby and Kamburowski (1992), the concept of
criticality of an activity has been wedded to that of project duration.
However, increasing or decreasing the duration of an activity in the presence
of GPRs may not be permissible since the resulting project may become
time-infeasible. The criticality of an activity says nothing about the effect of
shortening or extending the duration of an activity on the time-feasibility of
the project. It determines the effect on the total project duration, given that
the change is feasible with respect to the temporal constraints. In the
presence of GPRs one may be interested in varying an activity duration in
order to achieve network feasibility, rather than affect the project duration.
This novel consideration inspired Elmaghraby and Kamburowski (1992) to
introduce the concept of flexibility to denote the freedom to manipulate the
activity duration to achieve feasibility. The absence of such flexibility results
in denoting the activity as inflexible.

An activity is said to be forward-inflexible (backward-inflexible) if
extending (shortening) the activity duration by a small amount & (or in the
discrete case, 1) results in a time-infeasible project or a project completion
time exceeding the shortest project duration of the original project. An
activity is bi-inflexible if it is forward- and backward-inflexible.
Consequently, if an activity is forward-critical (backward-critical) (bi-
critical), then it is also forward-inflexible (backward-inflexible) (bi-
inflexible). If an activity is start- or finish-critical, then it is also bi-
inflexible. The last column of Table 7 denotes the flexibility type for each
activity in the network example of Figure 64.

If one aims at shortening the project duration by acting on the activity
durations, one should focus on those activities that are backward-flexible and
forward-critical (such as activity 9 in the network of Figure 64), or forward-
flexible and backward-critical (such as activity 5 in the network of Figure



126 Chapter 4

64). The duration of the former should be reduced, the duration of the latter
should be extended. Obviously, in order to reduce the duration of a project,
(backward-flexible and forward-critical or forward-flexible and backward-
critical) activities in every critical path should be tackled.

2.5 Activity floats in activity networks with GPRs

The notion of activity floats for activity networks with GPRs are similar
to those of standard CPM networks. The fotal float of an activity is nothing
else than the maximal amount of time that an activity can be delayed without
causing a project delay. An activity is critical if its total float equals zero.
However, in CPM networks an activity may be delayed by the late start or a
duration increase of a predecessor activity. In activity networks with GPRs,
only late starts are used for computing activity floats, since activity duration
increases may not lead to a project delay or may not be permissible at all
because of time-infeasibilities.

3. EXERCISES

1. Consider the following project activities with corresponding data:

Activity Duration Immediate successors
2,3,4
5,6

9

10
7,11
8,9
10

12

12

12

12

O o0 JO0N VAW

10
11
12
All precedence relations are of the finish-start type with zero time-lag.
Draw the network in AoN format. Perform the forward and backward
critical path calculations. Derive for each activity the total, free and
safety float values.
2. Consider the following data for a project with five activities:

SCWr—R AR, MUVMDOD =D



