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a b s t r a c t

The paper proposes a joint convex penalty for estimating the Gaussian inverse covariance
matrix. A proximal gradient method is developed to solve the resulting optimization prob-
lem with more than one penalty constraints. The analysis shows that imposing a single
constraint is not enough and the estimator can be improved by a trade-off between two
convex penalties. The developed framework can be extended to solve wide arrays of con-
strained convex optimization problems. A simulation study is carried out to compare the
performance of the proposed method to graphical lasso and the SPICE estimate of the in-
verse covariance matrix.

Published by Elsevier B.V.

1. Introduction

Recent surge in the use of electronic and digital technology has created vast amount of high dimensional data whose
analysis demands advanced statistical tools and computational techniques. Examples are biological data of gene expression
measurement, FMRI scanned images of human brain andNetflix data. In these datasets, one often have very fewobservations
as compared to the number of variables and therefore the choice of standard statistical methods becomes inappropriate for
making valid inference. Thus the concept of parsimony becomes very crucial. In many applications the problem of interest
is often estimating the dependence structure of the data where the underlying probability distribution of observations is
either fixed (static) or evolving over time (i.e. time varying or dynamic). In the static framework, a common assumption
is that the data are independently and identically distributed (i.i.d.), whereas in dynamic setting, the distribution of data
evolves over time and hence the i.i.d. assumption no longer remains valid. Here we focus on the static framework.

1.1. Background

The covariance selection was introduced by Dempster (1972) where the basic idea was to (i) introduce parsimony in
parameter model fitting and (ii) exploit the powerful yet elegant theory of exponential family as a tool of practical data
analysis. The computational ease along with attractive statistical features of Gaussian distributionmakes it a popular choice
for most of the application problems. Estimation of the inverse covariance matrix is important in a number of statistical
analyses including:
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• Gaussian Graphical Modeling: In Gaussian graphical modeling, a zero entry of an element in the inverse of a covariance
matrix corresponds to conditional independence between the variables.

• Linear or Quadratic Discriminant Analysis: When the features are assumed to have multivariate Gaussian density, the
resulting discriminant rule requires an estimate of the inverse covariance matrix.

• Principal Component Analysis (PCA): In multivariate high dimensional data it is often desirable to transform the high-
dimensional feature space to a lower dimension without loosing much information. The covariance matrix method is a
popular method for PCA estimates.

Several approaches have been suggested to address the estimation problem of the inverse of a covariance matrix. These
approaches are either based on regularized estimation of the inverse of the covariance matrix (Banerjee et al., 2008; Fried-
man et al., 2007; Bickel and Levina, 2008; Rothman et al., 2008) or regularized high dimensional regression (Meinshausen
and Bühlmann, 2006; Zhou et al., in press). Among earlier developments, an exact maximization of ℓ1 penalized log likeli-
hood using interior point methods was suggested for estimating the inverse covariance matrix (Dahl et al., 2008; Yuan and
Lin, 2007; Banerjee et al., 2008). Let X = (X1, X2, . . . , Xp)

T be a p-variate random vector from multivariate Gaussian distri-
butionNp(µ, Σ).µ is themean vector andΣ is the positive definite covariancematrix. Let X1, X2, . . . , Xn be n independent
copies of X . The sample covariance matrix is given by

S = (1/n)
n

i=1

(X i
− X̄)(X i

− X̄)T (1.1)

where X iT is the transpose of X i and X̄ is the mean vector of sample observations.
Let Ŵ be the estimate of inverse of the covariance matrix Σ . Banerjee et al. (2008) have considered the following

determinant maximization (MAXDET) (Vandenberghe and Boyd, 2004) problem:

Ŵ = argmax
X≻0

{log(det(X)) − tr(SX) − λ∥X∥1} (1.2)

where tr(S) is the trace of the matrix S, ∥X∥1 is the ℓ1 norm and defined as the sum of absolute values of elements of
matrix X and λ is the regularization parameter which controls the sparsity structure of the estimated inverse covariance
matrix. Another approach to solve the above optimization problem is based on high dimensional regression (Yuan, 2009;
Meinshausen and Bühlmann, 2006; Wainwright et al., 2006). For Gaussian graphical models, the main motivation behind
the regression approach is the explicit relation between the elements of the inverse covariancematrix and coefficients of the
predictor variables (Yuan, 2009). Meinshausen and Bühlmann (2006) follow this approach and estimate the neighborhood
structure of the variables by fitting ℓ1 regularized regression to each of the variables on the remaining set of variables as
predictors. They also have established the consistency of their estimates under certain assumptions of sparsity and stability.

Friedman et al. (2007) introduced graphical lasso which has better computational power compared to earlier methods.
In graphical lasso, the algorithm obtains the lasso estimate of each row/column of the covariance matrix given the sample
covariance matrix. It uses the block co-ordinate descent algorithm for optimization of the objective function.

Rothman et al. (2008) has proposed the sparse permutation invariance covariance estimate (SPICE). This method uses
Cholesky decomposition of the inverse covariance matrix and a quadratic approximation of the likelihood function to
simplify the problem as finding the minimum of each univariate parameter in the objective function in closed form. The
objective function is invariant and consequently the estimator remains permutation invariant. The method uses the cyclical
co-ordinate descent algorithm to do the optimization.

In another approach, Sheena and Gupta (2003) have proposed a constrainedmaximum likelihood estimator with restric-
tions on the lower or upper bound of the eigenvalues. Thismethod focuses on only one of the two ends of the eigenspectrum
and thus the resulting estimator does not correct for the overestimation of the large eigenvalues and underestimation of the
small eigenvalues simultaneously. Consequently their approach does not address the distortion of the entire eigenspectrum
especially in small sample sizes. Won et al. (2012) consider a maximum likelihood estimation of the covariance matrix with
condition number constraint. The condition number of a matrix is defined as the ratio of largest to smallest eigenvalue of
the matrix. However this approach itself requires an estimation of condition number.

To control the distortion of eigenspectrum of the covariancematrix, we consider a joint penalty of sum of singular values
(trace norm) in addition to the ℓ1 norm. By minimizing the joint penalty function of ℓ1 and the trace norm, the resulting
estimated inverse covariance matrix is sparse as well as singular values of the corresponding covariance matrix are more
centered than the observed sample covariance matrix. Rolfs et al. (2012) consider the estimation of the inverse covariance
matrixwhich can be seen as a particular case of the proposed approach by setting-off the trace normpenalty. A single penalty
of the ℓ1 norm is appropriate when the underlying true inverse covariance matrix is sparse. However it does not control the
distortion in eigenspectrum of the inverse covariancematrix. Controlling the eigenspectrum is an intuitive way to get a well
conditioned estimate of the inverse covariance matrix.

1.2. Contribution

We propose a joint convex penalty of ℓ1 and the trace norm to the inverse covariance matrix estimation. The estimator
thus obtained is simultaneously sparse and gives better performance than graphical lasso for small sample size in terms of
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mean squared error loss, average relative error and Kullback–Leibler loss. We implement a proximal gradient method for
optimization of the objective function. The proposed algorithm is shown to converge in function value as O(1/k) under mild
conditions.

2. Main result

2.1. Problem formulation and notations

Let X ∼ Np(0, Σ), Σ ≻ 0. For simplicity of notation, we denoteW = Σ−1. Let ∥W∥1 be the ℓ1 norm and is defined as the
sum of absolute values of its entries and ∥W∥∗ be the trace norm and defined as the sum of singular values of the matrixW .

We consider the following optimization problem with joint convex penalty:

argmin
W≻0

F(W ) := f (W ) + g1(W ) + g2(W ) (2.1)

where

f (W ) = − log(det(W )) + tr(SW ); g1(W ) = λ∥W∥1; g2(W ) = τ∥W∥∗ (2.2)

where λ and τ are non negative constants. In this paper, we particularly focus on the inverse covariance matrix for a mul-
tivariate Gaussian distribution. The algorithm developed in the paper addresses a wide array of problems in statistics and
machine learning. Some of the other important applications include Matrix Classification Problems (Tomioka and Aihara,
2007; Bach, 2008), Matrix Completion Problems (Candès and Recht, 2009), and Multi-Task Learning (Argyriou et al., 2008).

Note that f (W ) in (2.2) is a strictly convex function, the ℓ1 norm is a smooth convex function except at the origin and
the trace norm is convex surrogate of rank over the unit ball of spectral norm (Fazel, 2002). The above problem is the
convex optimization problem with non-smooth constraints. A natural choice to solve the above optimization problem is
the subgradient method which generates a sequence of estimates {Wk, k = 1, 2, 3, . . .} as

Wk = Wk−1 − α ▽ F(Wk−1)

where α is some positive step size and ▽F(Wk−1) is the subgradient indicating the direction of greatest value increase of
the function F(W ) at Wk−1. This method has a well known convergence rate of O(k−

1
2 ) for non-smooth convex functions

(Nesterov, 2005). We employ the proximal gradient method to obtain a better rate of convergence of order O(k−1). This
method can be generalized to solve an arbitrary combination of convex functions (Bertsekas, 2010).

2.2. Proximal gradient algorithm

Much like Newton’s method is a standard tool for solving unconstrained smooth optimization problems of modest size,
proximal algorithms can be viewed as an analogous tool for non-smooth, constrained, large-scale, or distributed versions of
these problems. They are very generally applicable, but are especially well-suited to problems of substantial recent interest
involving large or high-dimensional dataset. The main motivation behind the success of the proximal gradient algorithm is
the availability of inexpensive operators of a function, which itself involves solving a small convex optimization problem.
These sub-problems, which generalize the problem of projecting a point onto a convex set, often admit closed form solu-
tions or can be solved very quickly with standard or simple specialized methods. In our setup of the problem, we require
computation of a proximal operator for ℓ1 and trace norm.

Let h(W ) be a lower semi-continuous convex function of W , which is not identically equal to +∞. Then the proximal
point algorithm (Rockafellar, 1976) generates a sequence of solutions {Wk, k = 1, 2, 3, . . .} as

Wk = Proxh(Wk−1) = argmin
W≻0


h(W ) +

1
2
∥W − Wk−1∥

2
2


.

The above sequence {Wk, k = 1, 2, 3, . . .}weekly converges to the optimal solution ofminW≻0 h(W ) (Rockafellar, 1976).
To use the structure of the above optimization algorithm, we use quadratic approximation of f (W ), which is justified since
f is strictly convex.

2.2.1. Basic approximation model
For any L > 0, consider the following quadratic approximation model of f (W ) atW ′:

QL(W ,W ′) := f (W ′) + ⟨W − W ′, ▽f (W ′)⟩ +
L
2
∥W − W ′

∥
2
2 (2.3)

where ⟨A, B⟩ is the inner product of A and B.
The optimization problem in (2.1) has two convex penalties. Some of themethods to solvemultiple constraints optimiza-

tion problems are proximal Gradient Method (Bertsekas, 2010) and Generalized Forward–Backward Algorithm (Raguet et al.,
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2011). The proximal gradient method consists of sequential optimization of (2.1) by taking one constraint at a time in either
cyclic or random order. Rewriting the optimization problem (2.1) with single constraint gives

Prox 1
L gi

(W ′) = argmin
W≻0


QL(W ,W ′) + gi(W )


= argmin

W≻0


f (W ′) + ⟨W − W ′, ▽f (W ′)⟩ +

L
2
∥W − W ′

∥
2
2 + gi(W )



= argmin
W≻0


L
2

W −


W ′

−
1
L

▽ f (W ′)

2
2
+ gi(W )


. (2.4)

The projected gradient method is a special case of the proximal gradient method for the convex function where the con-
straint function gi(·) is an indicator function. In general, value of L is unknown and even if known, a local estimate is preferred
(Bach et al., 2011). For a convex differential function f (W ), it turns out to be an upper bound of the Lipschitz parameter of
▽f (W ). i.e. L satisfies:

∥ ▽ f (W ) − ▽f (W ′)∥2 ≤ L∥W − W ′
∥2 ∀W ,W ′

∈ Dom(f ). (2.5)

A common method of generating value of L is to do a line search. In the above optimization problem, we sequentially gen-
erate new estimates and increase the value of L by a factor γ > 1 until the following condition is met:

fL(Wk) ≤ f (Wk−1) + ⟨Wk − Wk−1, ▽f (Wk−1)⟩ +
L
2
∥Wk − Wk−1∥

2
2, (2.6)

whereWk is a solution at the kth iteration. However the above procedure could be time consuming as we need to optimize
(2.1) arbitrary number of times in order to get the suitable value of L. For a current setup of f (W ) as in (2.2) which is strictly
convex and differentiable, at iteration k, Lipschitz parameter L > 0 satisfies:

▽f (W ) = S − W−1

because

L ≥
∥(Wk)

−1
− (Wk−1)

−1
∥2

∥Wk − Wk−1∥2
≥ ∥(Wk)(Wk−1)∥2.

Therefore a suitable value of L can be taken as ∥(Wk−1 − ▽f (Wk−1))Wk−1∥2.
In Lemmas 2.1 and 2.2, we give the proximal operator for ℓ1 and the trace norm.

Lemma 2.1. Let M ∈ Rm×n. The proximal operator of ∥ · ∥1 with constant λ is given by

Proxλ∥·∥1(M) = argmin
C≻0


λ∥C∥1 +

1
2
∥C − M∥

2
2


, (2.7)

where

Proxλ∥·∥1(M) = sign(M)(0,M − λ)+, λ > 0.

Proof. Proof of the lemma is given in the Appendix. �

Lemma 2.2. Let M ∈ Rm×n and M = UΣV T be a singular value decomposition of M where U ∈ Rm×r and V ∈ Rr×n have
orthogonal columns,Σ is the diagonal matrix of singular values of M and r is the rank of thematrixM. Then the proximal operator
of ∥ · ∥∗ with constant τ is given by

Proxτ∥·∥∗
(M) = argmin

C≻0


τ∥C∥∗ +

1
2
∥C − M∥

2
2


, (2.8)

where Proxτ∥·∥∗
(M) = UΣτV T , Στ is the diagonal matrix with ((Στ ))ii = max(0, Σii − τ), τ > 0.

Proof. Proof of the lemma is given in the Appendix. �

For ℓ1 and trace norm, the proximal operators are inexpensive to calculate. This results in efficient optimization of the
objective function. The proximal operator for ℓ1 is elementwise soft-thresholding operator. The proximal operator for the
trace norm is obtained by shrinking the singular values of the inverse covariance matrix by a regularization parameter. A
larger value of the regularization parameter would make the resulting inverse covariance matrix singular, therefore in the
optimization algorithmwe do not shrink the singular values below threshold of minimum singular value. Sheena and Gupta
(2003) do similar where they assume that the eigenvalues have either a lower or an upper bound but this allows minimiza-
tion of the singular values in only one direction. Instead we consider minimization of the sum of singular values which leads
to minimization of the distortion of the entire eigenspectrum.
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2.2.2. Algorithm for optimization
Below we summarize the optimization algorithm for (2.1).

Initialize L0 = 1, γ > 1,W0 = diag(1/diag(S)).
Iterate

Step 1: Set L̄ = Lk−1.
Step 2: While F(W ∗) > QL̄((W

∗),Wk−1) + g1(W ∗) + g2(W ∗)

(where W ∗
= argminW≻0QL̄(W ,Wk−1) + g1(W ) + g2(W ))

Set L̄ = γ L̄.
Step 3: Set Lk = L̄,

Set Zk = Wk −
1
Lk

▽ f (Wk),
Set Zk+1 = Prox(τ/Lk)g2(Zk),
SetWk+1 = Prox(λ/Lk)g1(Zk+1).

Repeat until convergence.

2.2.3. Choosing the regularization parameter
Choice of the regularization parameter is a challenging problem in high dimensional data analysis. Regularization has

clear benefit in producing a sparse solution as well reduces false discovery rate. A smaller value of λ accounts for a sparser
structure of the inverse covariance matrix. Some of the methods for choosing the regularization parameter include K -fold
cross validation (KCV), stability approach to regularization selection (StARS) (Liu et al., 2010), Akaike-Information Criteria
(AIC) and Bayesian Information criteria (BIC). Experiments (Liu et al., 2010) have shown that AIC and BIC methods tend to
give poor performance for smaller sample size. Also K -fold cross validation tends to select smaller values of the regular-
ization parameter and results in higher false discovery rate. We follow StARS approach for estimating the regularization
parameters λ and τ .

3. Convergence analysis

We use the following result from Bertsekas (2010).

Lemma 3.1. Let {Wn, Ln, n = 1, 2, . . .} be the sequence generated by algorithm Section 2.2.2. Let c > 0 be a constant satisfying:

max{▽∥f (W )∥, ▽∥gj(W )∥} ≤ c and
max{f (Wn) − f (Zn+j−1), gj(Wn) − gj(Zn+j−1)} ≤ c∥Wn − Zn+j−1∥, j = 1, 2.

Then for a cyclic order optimization of components g1(·) and g2(·), the following holds:

∥Wn1 − W ∗
∥
2

≤ ∥Wn − W ∗
∥
2
−

2
Ln

(F(Wn) − F(W ∗)) + 18c2/L2n (3.1)

where Wn1 = Prox(τ/Ln)g2(Wn) and W ∗ is a solution of (2.1) and (2.2).

Proof. Refer Bertsekas (2010) for a detailed proof. �

The following proposition will be used in proving the convergence result of the proposed algorithm.

Proposition 1. Let {Wn, Ln, n = 1, 2, . . .} be the sequence generated by algorithm Section 2.2.2. Let c be a constant as defined
in lemma (3.1). Then,

F(Wn) − F(W ∗) ≤
Ln
4


∥Wn−1 − W ∗

∥
2
− ∥Wn − W ∗

∥
2


+
9c2

2Ln
−

λ

2
⟨W ∗

− Wn, ▽∥Wn∥1⟩. (3.2)

Proof. Proof of Proposition 1 is given in the Appendix. �

We give below the convergence of the proposed algorithm (Section 2.2.2).

Theorem 3.2. Let {Wk, k = 1, 2, . . .} be the sequence generated by the algorithm in Section 2.2.2. Let c be a constant as defined
in Lemma 3.1. In addition, we assume that there exists a constant M < ∞ such that


∞

n=1 |⟨W ∗
− Wn, ▽∥Wn∥1⟩| < M.
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We have,

F(Wk) − F(W ∗) ≤


γ L∥W 0

− W ∗
∥
2
F + 18c2 + M

4k


where L > 0 is the least upper Lipschitz constant of the gradient of f (W ) as defined in (2.5) and γ > 1 is a constant as defined
in the algorithm in Section 2.2.2.

Proof. Note that Ln
γ

≤ L ≤ Łn, for all n = 1, 2, . . . Using Proposition 1, by adding F(Wn) − F(W ∗) over n = 1, 2, . . . , we get
the desired result. �

Rolfs et al. (2012) consider the estimation of the inverse covariance matrix with single lasso penalty. They also used the
proximal gradient algorithm for optimization. The rate of convergence in case of joint penalty is different from that of Rolfs
et al. as they are derived under different settings. Due to non-smoothness of the trace norm, the optimal first order black
boxmethod for solving such problems has the convergence rate ofO(k−

1
2 ). The proximal gradient algorithm uses the special

structure of the trace and the ℓ1 norm which improve the convergence rate for joint penalty of order O(k−1).

4. Simulation and results

To implement the proposed method, we perform the simulation study for various choices of the inverse covariance
matrix. We generate random sample of observations from multivariate Gaussian distribution for varying n and p. We
consider different types of inverse covariance matrix as below:

(i) Hub graph: The rows/columns are partitioned into J equally-sized disjoint groups: {V1 ∪V2∪, . . . ,∪VJ} = {1, 2, . . . , p},
each group is associated with a pivotal row k. Let |V1| = s. We set wi,j = wj,i = ρ for i ∈ Vk and wi,j = wj,i = 0
otherwise. In our experiment, J = [p/s], k = 1, s + 1, 2s + 1, . . . , and we always set ρ = 1/(s + 1) with J = 20.

(ii) Neighborhood graph: We first uniformly sample (y1, y2, . . . , yn) from a unit square. We then set wi,j = wj,i = ρ with
probability (

√
2π)−1 exp(−4∥yi − yj∥2). The remaining entries of W are set to be zero. The number of nonzero off-

diagonal elements of each row or column is restricted to be smaller than [1/ρ]. In this paper, ρ is set to be 0.245.
(iii) Block diagonal matrix: In this setting W is a block diagonal matrix with varying block size. For p = 50 and p = 100

number of blocks is fixed to be 5 and for p = 200, number of blocks is fixed to be 10. Each block of the inverse covariance
matrix is taken to be a Toeplitz type matrix as in case (iv).

(iv) Toeplitz matrix: We set wi,j = 2 for i = j; wi,j = |0.75||i−j| for |i − j| = 1, 2, 3, 4; and wi,j = 0 otherwise.

For all these choices of inverse covariancematrices, we generate random numbers frommultivariate normal distribution
with varying n and p. We set n = 50, 100, 200 and p = 50, 100, 200. The performance of the proposedmethod is compared
to graphical lasso and SPICE estimates of the inverse covariance matrix. The joint penalty estimate of the inverse covariance
matrix was computed using R software version 3.0.2 based on the algorithm in Section 2.2.2. The graphical lasso estimate of
the inverse covariancematrixwas computed using R package ‘‘glasso’’ (http://statweb.stanford.edu/tibs/glasso/). In ‘‘glasso’’
there is option of not penalizing the diagonal elements by setting the option ‘‘penalize.diagonal = FALSE’’ which gives SPICE
estimate of the inverse covariancematrix. For each of the inverse covariancematrix estimate, we calculate Kullback–Leibler
(KL) Loss, Average Relative Error (ARE) and Mean Squared Error (MSE) as below:

KL Loss (W , Ŵ ) = − log(det(Ŵ )) + tr(W−1Ŵ ) + log(det(W )) − p.

MSE (W , Ŵ ) = ∥W − Ŵ∥
2
2.

ARE (W , Ŵ ) = | log(f (S, Ŵ )) − log(f (S,W ))|/ log(f (S,W ))

where f (·, ·) is the density of multivariate Gaussian distribution and S is the sample covariance matrix. Estimation of λ and
τ is implemented using StARS Liu et al. (2010) which is described below.

Given a sample of size n, the method generates N samples of size b, where b < n. In our setting for n < 200, we choose
b = 0.8n and for n ≥ 200, b = 10

√
n. For each of these N samples, an estimate of the inverse covariance matrix is obtained.

For each entry of the inverse covariance matrix, a measure of instability is calculated based on all N estimates. Finally a reg-
ularization parameter is selected which minimizes the average instability over all possible entries of the estimated inverse
covariance matrix. In practice this method tends to select least amount of the regularization parameter that simultaneously
makes estimates of the inverse covariancematrix sparse and replicable under random sampling. StARS is used for estimating
the penalization parameter for all the competingmethods as given in simulation viz. Joint Penalty, Graphical Lasso and SPICE.

The simulation results are given in the Appendix. The numbers in bracket are standard error of the estimate based on 20
simulations. For a hub graph type inverse covariance matrix, the proposed method consistently outperforms other two in
terms of KL Loss, ARE and MSE except for n = 50, p = 200 and n = 100, p = 200 where ‘‘glasso’’ performs better than
other two methods.

For a neighborhood type inverse covariance matrix, the proposed method dominates the graphical lasso and SPICE in
terms of KL-loss. Note that the KL-loss estimate is obtained by plugging in the estimated inverse covariance matrix in the
density, which in practice is a better criteria of evaluating the performance of different methods if the underlying Gaussian

http://statweb.stanford.edu/tibs/glasso/
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assumption is true. Therefore in practice if there is some evidence of observations to be Gaussian, the proposed method
will outperform other two methods for a neighborhood and hub type inverse covariance matrix structure. We get mixed
performance for all the three methods in terms of MSE and ARE.

For the block type inverse covariance matrix, the proposed method outperforms other methods for smaller sample size
in terms of KL-loss. For n = 200 we get mixed performance of the methods. This suggests that a joint penalty yields a better
estimate for small sample settings. In terms of ARE, we get mixed performance of all the methods. In terms of MSE, SPICE
and glasso perform better than the Joint Penalty approach. This shows that performance of a method also depends upon
the type of inverse covariance matrix as well as the criteria of performance evaluation. For Toeplitz type inverse covariance
matrix, all the methods give mixed performance in terms of KL-loss. However graphical lasso outperforms Joint Penalty and
SPICE method in terms of ARE whereas SPICE estimate has better performance than glasso and Joint Penalty estimate in
terms of the mean squared error.

Overall Joint Penalty method has a better performance than other two methods for hub, neighborhood and block type
of inverse covariance matrix. For Toeplitz type inverse covariance matrix, the graphical lasso and SPICE have better per-
formances than Joint Penalty method. In terms of KL-loss, the proposed Joint Penalty approach gives better performance.
This suggests that if the Gaussian assumption holds well in practice for the observations, the Joint Penalty would be a better
alternative to estimate the covariance structure and hence the underlying graphical model structure. The initial simulation
results also show that the proposed method performs well for small n and large p which is encouraging as in practice; we
often have very small sample size as compared to the number of unknown parameters (e.g. micro-array data). We also see
that the performance of methods varies for three choices of loss functions as they have different formulas. Note that the
graphical lasso algorithm estimates the covariance matrix rather than the inverse covariance matrix. Whereas Joint Penalty
and SPICE methods, both estimate the inverse covariance matrix. The values of MSE, KL-loss and average relative are sub-
stantially different for different choice of inverse covariance matrix. The hub and the neighborhood type inverse covariance
matrix have lower MSE as compared to other type of inverse covariance matrix. This shows that the loss function value of
the estimate depends upon the structure of the underlying true inverse covariance matrix. For fixed p the estimates tend to
improve for increasing sample size. However for fixed n, as expected, the estimate’s performance goes down for increasing p.

5. Summary

The proposed method imposes joint penalty which is more flexible for penalizing different entries of the inverse covari-
ance matrix than Graphical Lasso and SPICE. The simulation shows that the performance of the method also depends upon
the evaluation criteria and the underlying covariance structure. The proposed methods have better performance than other
two methods for at least three of the four underlying covariance matrix settings. The method can be extended to problems
where one has an arbitrary number of convex penalty constraints. Under mild conditions the algorithm achieves sublinear
rate of convergence whichmakes it an attractive choice for many optimization problems. On the other hand these estimates
of the inverse covariance matrix are consistent as MSE, ARE and KL-Loss decrease rapidly (as well as the corresponding
standard errors) for increasing sample size.
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Appendix

Proof of Lemma 2.1. LetM∗ be a solution for (2.7) which exists because (2.7) is the convex optimization problem. Then the
following subgradient optimality condition holds (Boyd et al., 2004)

0 ∈ M∗
− M + λ∂∥M∗

∥1 (A.1)

where ((∂∥M∥1))ij = ∂|mij| and is given by

∂|mij| =


+1 ifmij > 0
−1 ifmij < 0
∈ [−1, 1] ifmi,j = 0

i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

Note that (A.1) is satisfied if and only if |mij| ≤ λ and therefore the optimal solution is given by

m∗

ij = sign(mij)(mij − λ)+.

This completes the proof. �
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Proof of Lemma 2.2. Let L∗ be a solution to (2.8). Then the following subgradient optimality condition holds:

0 ∈ L∗
− M + τ∂∥L∗

∥∗. (A.2)

Let W = UΣτV T , we shall show that this choice of W satisfies the above optimality condition. The subdifferential ∂∥W∥∗

of ∥W∥∗ is given by Bach (2008)

∂∥W∥∗ =


UV T

+ H such that H ∈ Rm×n, ∥H∥2 ≤ 1,UTH = 0 and HV = 0

.

Therefore

W − M + τ∂∥W∥∗ = UΣτV T
− UΣV T

+ τ(UV T
+ H).

Multiplying both sides by UUT , and noting that UUT
= I we obtain

W − M + ∂∥W∥∗ = UUT (UΣτV T
− UΣV T

+ τ(UV T
+ H))

= UΣτV T
− U(Σ − τ I)V T

+ UUTH = 0.

Therefore,W = UΣτV T is a solution to (2.8), this completes the proof. �

Proof of Proposition 1. For such choice of Ln we have

F(Wn) = f (Wn) + λ∥Wn∥1 + γ ∥Wn∥∗ = QLn(Wn,Wn1) + λ∥Wn∥1 + τ∥Wn∥∗

= f (Wn1) +
Ln
2

∥Wn − Wn1∥
2
+ ⟨Wn − Wn1, ▽f (Wn1)⟩ + λ∥Wn∥1 + τ∥Wn∥∗.

Also we have,

F(W ∗) = f (W ∗) + λ∥W ∗
∥1 + γ ∥W ∗

∥∗

f (W ∗) ≥ f (Wn1) + ⟨W ∗
− Wn1, ▽f (Wn1)⟩

∥W ∗
∥1 ≥ ∥Wn∥1 + ⟨W ∗

− Wn, ▽∥Wn∥1⟩

∥W ∗
∥∗ ≥ ∥Wn∥∗ + ⟨W ∗

− Wn, ▽∥Wn∥∗⟩.

We get,

F(W ∗) − F(Wn) ≥ −
Ln
2

∥Wn − Wn1∥
2
+ ⟨W ∗

− Wn, ▽f (Wn1) + λ ▽ ∥Wn∥1 + τ ▽ ∥Wn∥∗⟩. (A.3)

Note thatWn is a solution of

▽f (Wn−1) + Ln(Wn − Wn1) + τ ▽ ∥Wn∥∗ = 0 (using (2.4)).

Therefore (A.3) becomes

F(W ∗) − F(Wn) ≥ −
Ln
2


∥Wn1 − Wn∥

2
+ 2⟨Wn1 − Wn,Wn − W ∗

⟩ −
2λ
Ln

⟨W ∗
− Wn, ▽∥Wn∥1⟩


.

We know that for any three matrices A, B, C

∥B − A∥
2
+ 2⟨B − A, A − C⟩ = ∥B − C∥

2
− ∥A − C∥

2.

Using this, we get

F(Wn) − F(W ∗) ≤
Ln
2


∥Wn1 − W ∗

∥
2
− ∥Wn − W ∗

∥
2
−

2λ
Ln

⟨W ∗
− Wn, ▽∥Wn∥1⟩


.

Using Lemma 3.1, we get

F(Wn) − F(W ∗) ≤
Ln
4


∥Wn−1 − W ∗

∥
2
− ∥Wn − W ∗

∥
2


+
9c2

2Ln
−

λ

2
⟨W ∗

− Wn, ▽∥Wn∥1⟩,

which completes the proof. �
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Appendix A. Hub type inverse covariance matrix

See Tables A.1–A.3.

Table A.1
Average KL-loss and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 2.852 (0.1941) 8.032 (0.0734) 21.89 (1.5192)
Glasso 3.237 (0.1725) 8.449 (0.0847) 20.15 (1.4906)
SPICE 3.172 (0.1352) 10.86 (0.1126) 32.33 (3.2141)

n = 100

Mixed penalty 1.652 (0.0429) 5.111 (0.0573) 12.56 (1.1628)
Glasso 1.9 (0.0149) 5.546 (0.0716) 11.65 (0.2497)
SPICE 1.884 (0.121) 6.429 (0.079) 15.37 (0.266)

n = 200

Mixed penalty 0.8774 (0.0542) 3.131 (0.0831) 6.54 (0.06)
Glasso 1.047 (0.0563) 3.454 (0.0984) 7.578 (0.0777)
SPICE 0.9612 (0.0556) 3.68 (0.0763) 8.997 (0.0645)

Table A.2
Average relative error and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 0.1041 (0.0077) 0.1985 (0.001) 0.4284 (0.0221)
Glasso 0.08216 (0.0147) 0.1996 (0.001) 0.4143 (0.0259)
SPICE 0.1267 (0.0073) 0.2695 (0.0012) 0.5179 (0.0328)

n = 100

Mixed penalty 0.05224 (0.0052) 0.1103 (0.0023) 0.2274 (0.0169)
Glasso 0.05226 (0.0052) 0.116 (0.0021) 0.2119 (0.0032)
SPICE 0.07454 (0.0051) 0.1489 (0.0024) 0.2617 (0.0033)

n = 200

Mixed penalty 0.02989 (0.0014) 0.05962 (0.0014) 0.1081 (0.0011)
Glasso 0.03077 (0.0013) 0.06483 (0.0013) 0.1213 (0.0011)
SPICE 0.04077 (0.0013) 0.07971 (0.0013) 0.1426 (0.0012)

Table A.3
MSE and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 2.176 (0.0562) 3.58 (0.0211) 6.346 (0.3268)
Glasso 2.346 (0.0373) 3.582 (0.0237) 5.617 (0.301)
SPICE 2.313 (0.0382) 4.37 (0.0686) 8.512 (0.5666)

n = 100

Mixed penalty 1.771 (0.0211) 2.951 (0.0107) 4.77 (0.2974)
Glasso 1.891 (0.0237) 3.04 (0.0164) 4.321 (0.0341)
SPICE 1.868 (0.0686) 3.358 (0.0244) 5.531 (0.052)

n = 200

Mixed penalty 1.322 (0.0372) 2.366 (0.0239) 3.437 (0.0122)
Glasso 1.442 (0.0341) 2.477 (0.0271) 3.609 (0.0128)
SPICE 1.352 (0.0402) 2.559 (0.0197) 4.183 (0.0172)
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Appendix B. Neighborhood graph type inverse covariance matrix

See Tables B.1–B.3.

Table B.1
Average KL-loss and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 3.389 (0.1122) 7.753 (0.17) 26.94 (0.3287)
Glasso 3.615 (0.0706) 8.035 (0.1373) 18.25 (0.2979)
SPICE 4.077 (0.1574) 10.82 (0.2606) 27.21 (0.3258)

n = 100

Mixed penalty 2.403 (0.051) 4.601 (0.114) 11.28 (0.3824)
Glasso 2.642 (0.0465) 5.105 (0.1174) 12.4 (0.2531)
SPICE 2.539 (0.0978) 5.822 (0.114) 16 (0.2897)

n = 200

Mixed penalty 1.36 (0.0273) 2.55 (0.0768) 6.86 (0.1132)
Glasso 1.521 (0.0266) 2.957 (0.0848) 7.923 (0.1185)
SPICE 1.403 (0.0407) 3.1 (0.076) 9.316 (0.1156)

Table B.2
Average relative error and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 0.1065 (0.004) 0.1912 (0.0048) 0.4579 (0.0048)
Glasso 0.09335 (0.0064) 0.1917 (0.0047) 0.3597 (0.0069)
SPICE 0.1483 (0.0034) 0.2634 (0.0059) 0.4459 (0.005)

n = 100

Mixed penalty 0.05349 (0.0044) 0.1101 (0.0026) 0.2021 (0.0046)
Glasso 0.05296 (0.0047) 0.1152 (0.0025) 0.2145 (0.0029)
SPICE 0.075 (0.0048) 0.1475 (0.0027) 0.2636 (0.0029)

n = 200

Mixed penalty 0.03255 (0.0011) 0.06201 (0.0015) 0.1131 (0.001)
Glasso 0.03041 (0.0031) 0.06676 (0.0015) 0.1251 (0.001)
SPICE 0.04151 (0.0029) 0.08115 (0.0015) 0.1468 (0.0011)

Table B.3
MSE and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 2.425 (0.0251) 3.536 (0.0591) 7.086 (0.0357)
Glasso 2.535 (0.0235) 3.509 (0.0437) 5.063 (0.0363)
SPICE 2.645 (0.0488) 4.411 (0.0805) 7.274 (0.0347)

n = 100

E2 2.086 (0.0234) 2.769 (0.0342) 4.32 (0.0783)
Glasso 2.216 (0.0334) 2.884 (0.0811) 4.363 (0.0362)
SPICE 2.066 (0.0311) 3.159 (0.0775) 5.463 (0.0349)

n = 200

E2 1.605 (0.0197) 2.129 (0.0244) 3.439 (0.0283)
Glasso 1.737 (0.0275) 2.271 (0.0265) 3.619 (0.0275)
SPICE 1.578 (0.0238) 2.347 (0.0147) 4.125 (0.0236)
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Appendix C. Block type inverse covariance matrix

See Tables C.1–C.3.

Table C.1
Average KL-loss and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 6.112 (0.0426) 14.16 (0.3076) 34.52 (0.3266)
Glasso 6.459 (0.0784) 13.72 (0.1317) 34.66 (0.2849)
SPICE 6.272 (0.0299) 14.73 (0.4188) 45.47 (0.487)

n = 100

Mixed penalty 4.8 (0.0955) 10.94 (0.1326) 25.95 (0.2334)
Glasso 4.993 (0.1186) 11.05 (0.0987) 26.71 (0.2455)
SPICE 4.809 (0.0909) 11.03 (0.0765) 31.23 (0.2415)

n = 200

Mixed penalty 3.349 (0.0992) 7.743 (0.1447) 18.65 (0.0642)
Glasso 3.595 (0.0636) 8.069 (0.1492) 18.47 (0.1883)
SPICE 3.249 (0.0766) 7.753 (0.1382) 19.83 (0.5733)

Table C.2
Average relative error and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 0.1716 (0.0278) 0.359 (0.009) 0.6643 (0.0065)
Glasso 0.1474 (0.0189) 0.2371 (0.0266) 0.676 (0.0055)
SPICE 0.2146 (0.0124) 0.3747 (0.029) 0.8935 (0.0062)

n = 100

Mixed penalty 0.04998 (0.0167) 0.1924 (0.0179) 0.382 (0.0048)
Glasso 0.03783 (0.0143) 0.1469 (0.0225) 0.4109 (0.0041)
SPICE 0.08744 (0.0131) 0.1966 (0.004) 0.5208 (0.0033)

n = 200

Mixed penalty 0.01631 (0.0053) 0.054 (0.0115) 0.2026 (0.0008)
Glasso 0.02754 (0.0073) 0.02849 (0.006) 0.1538 (0.0192)
SPICE 0.01282 (0.0036) 0.07825 (0.0082) 0.2463 (0.0239)

Table C.3
MSE and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 10.5 (0.0982) 16.3 (0.0433) 22.18 (0.0435)
Glasso 10.84 (0.0796) 16.07 (0.1187) 22.36 (0.0378)
SPICE 10.23 (0.0385) 15.3 (0.0656) 22.54 (0.0758)

n = 100

Mixed penalty 9.952 (0.1008) 14.87 (0.1281) 21.09 (0.0509)
Glasso 10.22 (0.0784) 15.41 (0.0926) 21.28 (0.0513)
SPICE 9.625 (0.0557) 14.71 (0.0606) 20.82 (0.0589)

n = 200

Mixed penalty 9.072 (0.1217) 13.91 (0.1462) 19.68 (0.0305)
Glasso 9.438 (0.0389) 14.46 (0.0652) 20.44 (0.1438)
SPICE 8.813 (0.0504) 13.6 (0.1365) 19.36 (0.1194)
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Appendix D. Toeplitz type inverse covariance matrix

See Tables D.1–D.3.

Table D.1
Average KL-loss and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 6.114 (0.1082) 14.72 (0.3109) 36.36 (0.4745)
Glasso 6.481 (0.0788) 14.21 (0.291) 35.3 (0.7003)
SPICE 6.525 (0.1855) 15.81 (0.779) 47.34 (0.2559)

n = 100

Mixed penalty 4.909 (0.0882) 11.34 (0.1637) 27.36 (0.1706)
Glasso 5.169 (0.0989) 11.28 (0.0695) 27.5 (0.1706)
SPICE 4.889 (0.1004) 11.42 (0.1086) 31.78 (0.1706)

n = 200

Mixed penalty 3.89 (0.047) 8.246 (0.0444) 19.61 (0.1693)
Glasso 4 (0.0336) 8.53 (0.0441) 19.09 (0.1432)
SPICE 3.74 (0.0481) 8.199 (0.0331) 19.86 (0.5867)

Table D.2
Average relative error and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 0.1369 (0.026) 0.3641 (0.0185) 0.6727 (0.0051)
Glasso 0.1289 (0.026) 0.2688 (0.0292) 0.6376 (0.0398)
SPICE 0.2181 (0.0247) 0.4039 (0.0309) 0.8861 (0.002)

n = 100

Mixed penalty 0.0393 (0.0093) 0.19 (0.024) 0.3965 (0.0054)
Glasso 0.03887 (0.0093) 0.1278 (0.006) 0.3948 (0.0304)
SPICE 0.08752 (0.0093) 0.1944 (0.0059) 0.4985 (0.0318)

n = 200

Mixed penalty 0.01466 (0.0029) 0.04256 (0.0093) 0.1971 (0.0024)
Glasso 0.01453 (0.0021) 0.03121 (0.0064) 0.1316 (0.0022)
SPICE 0.01348 (0.0021) 0.06633 (0.0064) 0.2013 (0.0208)

Table D.3
MSE and standard error over 20 replications.

p = 50 p = 100 p = 200

n = 50

Mixed penalty 11.64 (0.0281) 16.3 (0.072) 23.46 (0.0045)
Glasso 11.91 (0.0233) 16.88 (0.0635) 23.72 (0.0961)
SPICE 11.29 (0.0464) 16.23 (0.0571) 23.78 (0.0258)

n = 100

Mixed penalty 11.16 (0.0724) 15.68 (0.1016) 22.38 (0.0333)
Glasso 11.36 (0.0712) 16.3 (0.0145) 22.68 (0.0333)
SPICE 10.75 (0.0853) 15.55 (0.0187) 22.16 (0.0333)

n = 200

Mixed penalty 10.55 (0.0295) 15.01 (0.1505) 21.02 (0.0385)
Glasso 10.72 (0.0184) 15.39 (0.013) 21.91 (0.0343)
SPICE 10.17 (0.0245) 14.66 (0.0172) 20.9 (0.0822)
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