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Abstract—In this paper we analyze and investigate the bit
error rate (BER) performance of multiple-input multiple-o utput
underwater wireless optical communication (MIMO-UWOC) sys-
tems. In addition to exact BER expressions, we also obtain an
upper bound on the system BER. To effectively estimate the BER
expressions, we use Gauss-Hermite quadrature formula as well
as approximation to the sum of log-normal random variables.We
confirm the accuracy of our analytical expressions by evaluating
the BER through photon-counting approach. Our simulation
results show that MIMO technique can mitigate the channel
turbulence-induced fading and consequently, can partially extend
the viable communication range, especially for channels with
stronger turbulence.

Keywords—MIMO, BER analysis, underwater wireless optical
communications, log-normal turbulence-induced fading.

I. I NTRODUCTION

Underwater wireless optical communication (UWOC) has
been recently introduced to meet requirements of high through-
put and large data underwater communications. Acoustic com-
munication systems, which have been investigated and imple-
mented in the past decades have some impediments which
hamper on their widespread usage for today’s underwater
communications. In other words, UWOC systems have larger
bandwidth, lower latency and higher security than acoustic
communication systems [1]. These unique features suggest
UWOC system as a desirable alternative to acoustic commu-
nication systems.

Despite of all the interesting specifications of UWOC
systems, they are only suitable for low range underwater
communications, i.e., typically less than100 m. This is mainly
due to the severe absorption, scattering and turbulence effects
of underwater optical channels. Absorption and scatteringof
photons through propagation under water cause attenuation
and time spreading of the received optical signals [1]–[4].On
the other hand, underwater optical turbulence which is mainly
due to the random variations of refractive index (because of
salinity and temperature fluctuations) results in fading ofthe
propagating optical signal [5], [6].

Prior works mainly focused on the study of absorption and
scattering effects of UWOC channels. In [1]–[3] the channel
turbulence-free impulse response has been simulated and mod-
eled using Monte Carlo simulation method. In [7], a cellular
topology for UWOC network has been proposed and also the
uplink and downlink BERs of such a network with optical
code division multiple access (OCDMA) technique have been
investigated. On the other hand, some useful studies have been
accomplished to characterize and investigate turbulence effects

of UWOC channels. For examples, in [6] the scintillation index
of optical plane and spherical waves propagating in weak
oceanic turbulence channel, has been evaluated using Rytov
method. Also the average BER of an UWOC system with
log-normal fading channel has been investigated in [8], [9].
Moreover, beneficial application of multi-hop transmission on
the performance of underwater wireless OCDMA networks has
been investigated in [10].

In this paper we analytically study the BER performance
of an UWOC system, with respect to the all impairing ef-
fects of UWOC channels, namely absorption, scattering and
turbulence. In order to mitigate turbulence-induced fading and
therefore to improve the system performance we use spatial di-
versity, i.e., employment of multiple transmitting lasersand/or
multiple receiving apertures. We assume symbol-by-symbol
processing and equal gain combining (EGC) at the receiver. In
addition to evaluating the exact BER, we also evaluate an upper
bound on the system BER from the inter-symbol interference
(ISI) viewpoint. Moreover, we use Gauss-Hermite quadrature
formula and also approximate the sum of log-normal random
variables with an equivalent random variable, to effectively
compute the average BERs.

II. CHANNEL AND SYSTEM MODEL

A. Channel Description

Propagation of light in underwater medium is under the
influence of three impairing phenomena, namely absorption,
scattering and turbulence. Absorption and scattering processes
cause loss on the received optical signal. Also scattering of
photons temporally spreads the received optical signals and
therefore limits the data transmission rate through inducing
ISI. In order to take into account absorption and scattering
effects of the underwater channel, we simulate the channel
impulse response by Monte Carlo simulation method [1]–[3].
This turbulence-free impulse response of the UWOC channel
between any two nodes,ith andjth, is denoted byh0,ij(t).

On the other hand, turbulence effects of the channel can be
characterized by a multiplicative fading coefficient,h̃ij [11]–
[13]. For weak oceanic turbulence, the aforementioned fading
coefficient can be modeled as a random variable with log-
normal probability density function (PDF) [8], [9] as;

fh̃ij
(h̃ij) =

1

2h̃ij

√

2πσ2
Xij

exp






−

(

ln(h̃ij)−2µXij

)2

8σ2
Xij






, (1)
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whereµXij
andσ2

Xij
are mean and variance of the Gaussian

distributed log-amplitude factorXij = 1
2 ln(h̃ij). Therefore,

the aggregated impulse response of the channel between any
ith andjth nodes can be summarized ashi,j(t) = h̃ijh0,ij(t).
To insure that fading only makes fluctuations on the received
optical signal, we should normalize fading coefficients as
E[h̃ij ] = 1, which implies thatµXij

= −σ2
Xij

.

B. System Model

Consider an UWOC system withM transmitting lasers
andN receiving apertures. We assume on-off keying (OOK)
modulation, i.e., the transmitter transmits each bit “1” with
pulse shapeP (t) and is off during transmission of data bit
“0”. Hence, the total transmitted signal can be defined as
S(t) =

∑∞
k=−∞ bkP (t − kTb), wherebk ∈ {0, 1} is the kth

time slot transmitted data bit andTb is the bit duration time. In
the case of transmitter diversity, all the transmitters transmit
the same data bitbk on their kth time slot. Therefore, the
transmitted signal of theith transmitter can be described as
Si(t) =

∑∞
k=−∞ bkPi(t − kTb), where

∑M
i=1 Pi(t) = P (t),

for the sake of fairness.

Eachith transmitter,TXi is pointed to one of the receivers.
The other receivers also capture the transmitted signal ofTXi

due to multiple scattering of photons under water. In other
words, the transmitted signal ofTXi, Si(t) passes through
channel with impulse responsehi,j(t) to reach thejth receiver,
RXj . Therefore, the received optical signal fromTXi to the
jth receiver can be determined as;

yi,j(t) = Si(t) ∗ hi,j(t) =

∞
∑

k=−∞

bkh̃ijΓi,j(t− kTb), (2)

in which Γi,j(t) = Pi(t) ∗ h0,ij(t) and∗ denotes convolution
operation. Furthermore,RXj receives the transmitted signal of
all the transmitters. Hence, we can express the total received
optical signal ofRXj as;

yj(t) =

M
∑

i=1

yi,j(t) =

M
∑

i=1

∞
∑

k=−∞

bkh̃ijΓi,j(t− kTb). (3)

At the receiver side various noise components, i.e., back-
ground light, dark current, thermal noise and signal-dependent
shot noise all affect the system operation. Since these com-
ponents are additive and independent of each other, we model
them as an equivalent noise component with Gaussian distribu-
tion [13]. We also assume that the signal-dependent shot noise
is negligible and hence the noise variance is independent of
the received optical signal (see Appendix A).

III. BER A NALYSIS

In this section we calculate the BER of UWOC system
for both single-input single-output (SISO) and MIMO con-
figurations. We assume symbol-by-symbol processing at the
receiver side, which is suboptimal in the presence of ISI
[14]. In other words, the receiver integrates its output current
over eachTb seconds and then compares the result with an
appropriate threshold to detect the received data bit. In this
detection process, the availability of channel state information
(CSI) is assumed for threshold calculation [11].

A. SISO UWOC Link

In SISO scheme, the0th time slot integrated current of the
receiver output can be expressed as1;

r
(b0)
SISO = b0h̃γ

(s) + h̃

−1
∑

k=−L

bkγ
(k) + vTb

, (4)

whereh̃ is the channel fading coefficient,γ(s) = R
∫ Tb

0 Γ(t)dt,
R = ηq

hf is the photodetector’s responsivity,η is the photode-
tector’s quantum efficiency,q = 1.602 × 10−19 C is electron
charge,h = 6.626× 10−34 J/s is Planck’s constant,f is the
optical source frequency andL is the channel memory. Fur-
thermore,γ(k) = R

∫ Tb

0
Γ(t − kTb)dt = R

∫ −(k−1)Tb

−kTb
Γ(t)dt

interprets the ISI effect andvTb
is the receiver integrated noise

component, which has a Gaussian distribution with mean zero
and varianceσ2

Tb
[13].

Assuming the availability of CSI, the receiver compares its
integrated current over eachTb seconds with an appropriate
threshold, i.e., withTh = h̃γ(s)/2. Therefore, the conditional
probability of errors when bits “0” and “1” are transmitted,
can be obtained respectively as;

P
(SISO)

be|0,h̃,bk
= Pr(r

(b0)
SISO ≥ Th|b0 = 0)

= Q





h̃
[

γ(s)/2−∑−1
k=−L bkγ

(k)
]

σTb



 , (5)

P
(SISO)

be|1,h̃,bk
= Pr(r

(b0)
SISO ≤ Th|b0 = 1)

= Q





h̃
[

γ(s)/2 +
∑−1

k=−L bkγ
(k)
]

σTb



 , (6)

whereQ (x) = (1/
√
2π)

∫∞

x
exp(−y2/2)dy is the Gaussian-

Q function. The final BER can be obtained by averaging the
conditional BERP

(SISO)

be|h̃,bk
= 1

2P
(SISO)

be|0,h̃,bk
+ 1

2P
(SISO)

be|1,h̃,bk
, over

fading coefficienth̃ and all 2L possible data sequences for
bks, as follows;

P
(SISO)
be =

1

2L

∑

bk

∫ ∞

0

P
(SISO)

be|h̃,bk
fh̃(h̃)dh̃. (7)

The form of Eqs. (5) and (6) suggests an upper bound on
the system BER, from the ISI point of view. In other words,
bk 6=0 = 1 maximizes Eq. (5), while Eq. (6) has its maximum
value for bk 6=0 = 0. Indeed, when data bit “0” is sent the
worst effect of ISI occurs when all the surrounding bits are
“1” (i.e., when bk 6=0 = 1), and vice versa [14]. Regarding
to these special sequences, the upper bound on the BER of
SISO-UWOC system can be evaluated as;

P
(SISO)
be,upper =

1

2

∫ ∞

0

[

Q





h̃
[

γ(s)/2−∑−1
k=−L γ(k)

]

σTb





+Q

(

h̃γ(s)

2σTb

)]

fh̃(h̃)dh̃. (8)

1The channel correlation time is on the order of10
−5 to 10

−2 seconds
[5]. Therefore, the same fading coefficient is considered for all the consecutive
bits in Eq. (4)



The averaging in Eqs. (7) and (8) over fading coefficient,
involves integrals of the form

∫∞

0 Q(Ch̃)fh̃(h̃)dh̃, whereC is
a constant, e.g.,C = γ(s)/2σTb

in second integral of Eq. (8).
Such integrals can be calculated by Gauss-Hermite quadrature
formula [15, Eq. (25.4.46)] as follows;

∫ ∞

0

Q(Ch̃)fh̃(h̃)dh̃

=

∫ ∞

−∞

Q(Ce2x)
1

√

2πσ2
X

exp

(

− (x− µX)2

2σ2
X

)

dx

≈ 1√
π

U
∑

q=1

wqQ

(

C exp

(

2xq

√

2σ2
X + 2µX

))

, (9)

in whichU is the order of approximation,wq, q = 1, 2, ..., U ,
are weights ofU th order approximation andxq is theqth zero
of theU th-order Hermite polynomial,HU (x) [11], [15].

B. MIMO UWOC Link

Assume a multiple-input multiple-output UWOC system
with equal gain combiner (EGC). The integrated current of
the receiver output can be expressed as;

r
(b0)
MIMO = b0

N
∑

j=1

M
∑

i=1

h̃ijγ
(s)
i,j +

N
∑

j=1

M
∑

i=1

h̃ij

−1
∑

k=−Lij

bkγ
(k)
i,j + v

(N)
Tb

,

(10)

whereγ(s)
i,j = R

∫ Tb

0 Γi,j(t)dt, γ
(k)
i,j = R

∫ Tb

0 Γi,j(t−kTb)dt =

R
∫ −(k−1)Tb

−kTb
Γi,j(t)dt and v

(N)
Tb

is the integrated combined
noise component, which has a Gaussian distribution with mean
zero and varianceNσ2

Tb
.2

Based on Eq. (10) and availability of CSI, in MIMO
scheme the receiver selects the threshold value asThMIMO =
∑N

j=1

∑M
i=1 h̃ijγ

(s)
i,j /2. Therefore, pursuing similar procedures

as Section III-A results into the following equation for condi-
tional BER.

P
(MIMO)

be|b0,H̄,bk
=

Q





∑N
j=1

∑M
i=1h̃ijγ

(s)
i,j −(−1)b0

∑N
j=1

∑M
i=1h̃ij

∑−1
k=−Lij

2bkγ
(k)
i,j

2
√
NσTb



,

(11)

in which H̄ = {h̃11, h̃12, ..., h̃MN} is the fading coefficients’
vector. Assume the maximum channel memory to beLmax =
max{L11, L12, ..., LMN}, then the average BER of MIMO-
UWOC system can be obtained by averaging overH̄ (through
M × N -dimensional integral) as well as averaging over all
2Lmax sequences forbks;

P
(MIMO)
be =

1

2Lmax

∑

bk

∫

H̄

1

2

[

P
(MIMO)

be|1,H̄,bk
+ P

(MIMO)

be|0,H̄,bk

]

f
H̄
(H̄)dH̄ , (12)

wheref
H̄
(H̄) is the joint PDF of fading coefficients in̄H.

2Note that the received background power is proportional to the receiver
aperture area. However based on Appendix A, the background noise has
negligible contribution on the total noise of the receiver.Moreover, each
receiver has its distinct dark current and thermal noise. Hence, the noise
variance in MIMO scheme isN times of that in SISO case.

Similar to Section III-A, the upper bound on the BER of
MIMO-UWOC system can be evaluated by considering the
transmitted data sequences asbk 6=0 = 1 for b0 = 0 and
bk 6=1 = 0 for b0 = 1. Moreover, similar to Eq. (9) the
M ×N -dimensional integral in Eq. (12) can be approximated
byM×N -dimensional series, using Gauss-Hermite quadrature
formula.

It’s worth noting that the sum of random variables in
Eq. (11) can be effectively approximated by an equivalent
random variable, using moment matching method [16]. In
other words, we can reformulate the numerator of Eq. (11)
as β(b0) =

∑N
j=1

∑M
i=1 G

(b0)
i,j h̃ij , i.e., the weighted sum of

M ×N random variables. The weight coefficients are defined
asG(b0)

i,j = γ
(s)
i,j + (−1)b0+1

∑−1
k=−Lij

2bkγ
(k)
i,j . In the special

case of log-normal distribution for fading coefficients,β(b0)

can be approximated with an equivalent log-normal random
variable asβ(b0) ≈ α(b0) = exp(2z(b0)), with log-amplitude
meanµz(b0) and varianceσ2

z(b0) of [17];

µz(b0) =
1

2
ln

( N
∑

j=1

M
∑

i=1

G
(b0)
i,j

)

− σ2
z(b0) , (13)

σ2
z(b0)=

1

4
ln






1+

∑N
j=1

∑M
i=1

(

G
(b0)
i,j

)2(

e
4σ2

Xij − 1
)

(

∑N
j=1

∑M
i=1 G

(b0)
i,j

)2






. (14)

Then averaging over fading coefficients reduces to one-
dimensional integral of

P
(MIMO)
be|b0,bk

≈
∫ ∞

0

Q

(

α(b0)

2
√
NσTb

)

fα(b0)(α(b0))dα(b0), (15)

which can be effectively calculated using Eq. (9).

IV. N UMERICAL RESULTS

In this section we present the numerical results for BER
of MIMO-UWOC systems. The system is assumed to be
established in coastal water which has attenuation, absorption
and extinction coefficients ofa = 0.179 m−1, b = 0.219
m−1 and c = 0.398 m−1, respectively [4]. Further, we
assume rectangular pulse shape for transmitted data bits, i.e.,
P (t) = PΠ

(

t−Tb/2
Tb

)

, whereP is the total transmitted power

per bit “1” andΠ(t) is a rectangular pulse with unit amplitude
in the interval [−1/2, 1/2]. Moreover, we assume the same
transmitted power ofP/M for all the transmitters and the
same receiving aperture area ofAr/N for all the receivers,
whereAr is the total aperture area of the receiver. Table I
shows some of the parameters which we have assumed for the
channel fading-free impulse response simulation and the noise
characterization (refer to Appendix A for further descriptions
on the noise components characterization).

Fig. 1 depicts the upper bound and exact BER of a25 m
coastal water link with different configurations and data rate
of Rb = 1 Gbps. As it can be seen, in all the configurations
upper bound curves have excellent matches with the exact BER
curves. Moreover, in a relatively strong turbulent channel, e.g.,
σX = 0.4, spatial diversity (especially at the transmitter side)
can introduce a noticeable performance improvement, e.g.,6
dB and 9 dB at the BER of10−12, using two and three
transmitters, respectively. This achievement relativelyvanishes



TABLE I. SOME OF THE IMPORTANT PARAMETERS FOR CHANNEL

SIMULATION AND NOISE CHARACTERIZATION.

Coefficient Symbol Value

Half angle field of view FOV 400

Receiver aperture diameter D0 20 cm
Source wavelength λ 532 nm
Water refractive index n 1.331

Source full beam divergence θdiv 0.020

Photon weight threshold at the receiver wth 10−6

Quantum efficiency η 0.8
Electronic bandwidth B 10 GHz
Optical filter bandwidth ∆λ 10 nm
Equivalent temperature Te 290 K
Load resistance RL 100 Ω

Dark current Idc 1.226 × 10−9 A
Received background power PBG 6.34 × 10−11 W
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Fig. 1. Upper bound (UB) and exact BER of a25 m coastal water link with
different configurations.Rb = 1 Gbps,σX = 0.1 and0.4.

in very weak turbulence regimes, e.g.,σX = 0.1, where
fading has a negligible effect on the system performance.
Furthermore, this figure shows that the transmitter diversity
performs better than the receiver diversity, due to less noise
power and larger aperture area.

In Figs. 2, 3 and 4 the upper bound BER of a25 m coastal
water link with σX = 0.4 and Rb = 1 Gbps is illustrated
for different configurations. In particular, Fig. 2 compares the
results ofM × N -dimensional integrals of Eqs. (11), (12)
with the photon-counting method results [18]. As it is obvious,
excellent matches between these curves confirm the accuracy
of the derived expressions in this paper. It is worth noting that
SIMO schemes, which compensate for fading impairments (at
high SNR regimes) can not outperform SISO performance,
except at low BERs. This is mainly due to that each receiver
in SIMO scheme hasN times less aperture area than SISO
receiver and also SIMO system hasN times larger noise
contribution than SISO scheme.

In Fig. 3 we applied Gauss-Hermite quadrature formula
(GHQF) to approximate theM × N -dimensional integrals
of Eqs. (11), (12) withM × N -dimensional series, using
Eq. (9). The order of approximation is assumed to beU =
30. Obviously, GHQF can effectively compute theM × N -
dimensional integrals (even with less thanU = 30 points for
each integral). In Fig. 4 we used Eqs. (13)-(15) to approximate
the weighted sum of log-normal random variables in Eq. (11)
with an equivalent log-normal random variable. As it can bee
seen, this approximation provides an excellent estimate ofthe
BER of UWOC system with transmitter diversity. However,
the discrepancy increases for the case of receiver diversity.
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Fig. 2. Accuracy of the obtained expressions; upper bound BER of a 25 m
coastal water link with different configurations,Rb = 1 Gbps andσX = 0.4,
obtained using photon-counting method and classical approach of this paper.
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In other words, in the case of transmitter diversity all the
transmitters are pointed to a single receiver and therefore, all
the links have the same weight coefficient ofG

(b0)
i,1 = G

(b0)
MISO.

Hence, BER expression of MISO-UWOC can be estimated
using approximation of unweighted sum of log-normal random
variables [11].

V. CONCLUSION

In this paper we analytically calculated the BER of a
MIMO-UWOC system with equal gain combining and symbol-
by-symbol processing. Our analytical treatment included all
the disturbing effects of the UWOC channels, i.e., absorp-
tion, scattering and fading. we obtained both the exact and
upper bound BER expressions. Also we used Gauss-Hermite
quadrature formula to more effectively calculate the averag-
ing integrals with finite series. Moreover, we approximated
the weighted sum of log-normal random variables with an
equivalent log-normal random variable to reduceM × N -
dimensional integrals of averaging (over fading coefficients) to
one-dimensional integrals. Our analytical results showedwell
match between the exact and upper bound BERs and also the
results of Gauss-Hermite quadrature formula. Furthermore, we
observed that MIMO transmission can introduce a noteworthy
performance improvement in relatively high turbulent UWOC
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channels. However, we assumed log-normal distribution for
fading statistics, we should emphasize that most of our deriva-
tions are applicable for any fading distribution.

APPENDIX A
NEGLIGIBILITY OF SIGNAL -DEPENDENTSHOT NOISE

In this appendix we verify the validity of assumption that
“the signal-dependent shot noise is negligible with respect to
the other noise components”. To do that, we should satisfy
the inequalityσ2

ss ≪ σ2
BG + σ2

DC + σ2
TH , whereσ2

ss, σ2
BG,

σ2
DC and σ2

TH are respectively the current variance of the
Gaussian distributed signal-dependent shot noise, background
light, dark current and thermal noise [19]. In order to verify the
validity of the above mentioned assumption we should satisfy
the following inequality;

2
ηP

(rec)
s

hf
q2B ≪ 2

ηPBG

hf
q2B + 2qIdcB +

4KTeB

RL
(16)

⇒ P (rec)
s ≪ PBG +

Idc
ηq

hf +
2KTe

ηq2RL
hf. (17)

With respect to the parameters in Table I, Eq. (17) simplifies
to P

(rec)
s ≪ 6.34×10−11+2.688×10−9+1.097×10−3 W ≈

1 mW. Here, the background noise power is calculated in a
similar procedure to [19]. Some of the assumed parameters
are shown in Table I and the other parameters are exactly the
same as those are in [19].

To gain more insight on validity of the aforementioned
assumption let’s to evaluate the BER of an UWOC system with
P

(rec)
s ≪ 1 mW and high ISI, using Gaussian approximation

[14]. Assume an UWOC system withP (rec)
s = 10−4 mW

received power for transmitted bit “1”, which implies to the

mean photoelectron counts ofm1 =
ηP (rec)

s

hf Tb ≈ 2.85× 105,
for Tb = 1 ns. Also assume the photoelectrons count to be
m0 = m1/2 = 1.425 × 105, conditioned on transmission of
bit “0” (m0 = m1/2 relates a channel with high ISI). With
respect to the parameters of Table I, (count) noise variancecan
be obtained asσ2

m ≈ σ2
m,TH = 2KTeTb

RLq2 ≈ 3.12 × 106 [20].
Using Gaussian approximation, the BER of an UWOC system
with the above parameters form0, m1 andσ2

m can be obtained

as;

Pbe ≈ Q

(

m1 −m0
√

m1 + σ2
m +

√

m0 + σ2
m

)

≈ Q(40) ≈ 0. (18)

Therefore, the aforementioned assumption is often valid for
a wide range of BERs. Note that for typical values of BER,
P

(rec)
s has smaller values than10−4 W, and hence the above

assumption is more valid.
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