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and Greene, 1978; Purkerson-Parker et al., 2001; Hatcher et al.,
2007), and in primary mesencephalic cultures or dopaminergic
cell lines (0.01–300 µM) (Sanchez-Ramos et al., 1998; Kitazawa
et al., 2001, 2003; Kanthasamy et al., 2005). Aggregation of
α–syn, ubiquitin–proteasome impairment function (Uversky
et al., 2001; Sun et al., 2005) and microglia activation (Mao and
Liu, 2008) have also been observed.

Paraquat is a quaternary nitrogen herbicide used worldwide.
Due to its structural similarity to MPP (the active metabolite
of MPTP), it was thought to be toxic to dopaminergic neurons
and thus might be related to PD. The possible association
between PQ and PD received attention from the study of Liou
et al. (1997) performed in PD patients (120 patients and 240
controls) in Taiwan, in which the pesticide use was associated
with an increased risk of developing PD, being higher for
those individuals who reported using PQ (Liou et al., 1997).
Likewise, Tanner et al. (2011) reported a significant association
between PD and the use of oxidative pesticides, including PQ
(OR = 2.5, 95% CI, 1.4–4.7) in professional pesticide applicators
(110 cases and 358 controls) (Tanner et al., 2011). Similarly, other
epidemiologic studies have associated the exposure to PQ with
PD (Hertzman et al., 1990; Ascherio et al., 2006; Kamel et al.,
2007; Wang et al., 2011).

Paraquat is taken up into dopaminergic terminals by the
dopamine transport and organic cation transporter 3 (Rappold
et al., 2011), and causes cellular toxicity by oxidative stress
through the cellular redox cycling generating superoxide radical
by the oxidation of NADPH, which in turn impairs the
restauration of GSH levels and thus the activity of several
antioxidant systems (Berry et al., 2010; Franco et al., 2010).
It has been observed that repeated administrations of PQ to adult
mice and rats (5–10 mg/Kg/ week/at least 3 weeks, i.p.) increase
ROS levels in the striatal homogenate, induce a dose-dependent
decrease in dopaminergic neurons from the substantia nigra,
a decline in striatal dopamine nerve terminal density, and a
neurobehavioral syndrome characterized by reduced ambulatory
activity (Brooks et al., 1999; McCormack et al., 2002; Kuter
et al., 2010). PQ also reproduces other biochemical and
neuropathological characteristics of human Parkinsonism such
as microglia activation (Wu et al., 2005; Purisai et al., 2007),
α-syn up-regulation and fibrillation (Uversky et al., 2001;
Manning-Bog et al., 2002), increases lipid peroxidation (increase
of 4-hydroxynonenals) (McCormack et al., 2005), alters parkin
solubility promoting its intracellular aggregation (Wang et al.,
2005), induces a proteasome dysfunction in SH-SY5Y cells (Ding
and Keller, 2001; Yang and Tiffany-Castiglioni, 2007), as well as
in homogenates from postmortem PD brains (McNaught and
Jenner, 2001; McNaught et al., 2002), impairs mitochondrial
function at the level of complex III to generate ROS (Castello
et al., 2007; Drechsel and Patel, 2009), promotes cytochrome C
release (González-Polo et al., 2004; Fei et al., 2008), induces GSH
depletion (Schmuck et al., 2002; Kang et al., 2009), and causes
cell injury leading to apoptotic cell death (Berry et al., 2010;
Franco et al., 2010). PQ has been used as a toxicological model for
PD that has permitted getting important information about the
mechanisms involved in the neurodegeneration associated with
PD (Gao and Hong, 2011).

Rotenone, an OP insecticide has also been associated with
an increased risk of PD. Two epidemiological studies found an
association between rotenone exposure and PD risk, reporting
an increased risk of 10–fold (OR = 10.0, 95% CI, 2.9–34.3) in
East Texas farmers (Dhillon et al., 2008), and 2.5-fold (OR = 2.5,
95% CI, 1.3–4.7) in PD cases (n = 110) compared with controls
(n = 358) from professional pesticide applicators participants in
the AHS (Tanner et al., 2011). Rotenone can freely cross the
blood–brain barrier and is a well-establishedmitochondrial toxin
that specifically inhibits the complex I (NADH–dehydrogenase)
of the electron transport chain leading to ATP depletion,
energy failure and mitochondrial ROS production, which in
turn induces cytochrome C release and apoptotic cell death
(Clayton et al., 2005; Radad et al., 2006; Sherer et al., 2007).
It has been shown that, like MPTP, rotenone treatment in
animal models (1.5–3 mg/Kg/day/up to 3 weeks) reproduces
features of PD such as bradykinesia, postural instability and/or
rigidity, reduces the tyrosine hydroxylase-positive neurons in the
substance nigra, induces a loss of striatal dopamine, and the
accumulation of α-syn and poly-ubiquitin positive aggregates in
remaining dopaminergic neurons (Betarbet et al., 2000; Sherer
et al., 2003; Cannon et al., 2009). Likewise, Betarbet et al.
(2006) observed that chronic administration of 3.0 mg/Kg/day
of rotenone for up to 5 weeks to male rats caused the
oxidation of DJ-1, accumulation of α-syn, and proteasomal
impairment (Betarbet et al., 2006). These effects were also
observed in neuroblastoma SK-N-MC cells treated with rotenone
(5 nM/4 weeks), as well as a loss of GSH, oxidative DNA and
protein damage and caspase-dependent death (Sherer et al.,
2002; Betarbet et al., 2006). Rotenone has also the capacity
to activate microglia (Sherer et al., 2003); Gao et al. (2002)
demonstrated that the addition of microglia to primary neuron-
enriched cultures (neuron/glia cultures) markedly increased
the dopaminergic neurodegeneration induced by rotenone (1
nM/8 days), and this neurotoxicity was attenuated by the
inhibition of NADPH oxidase or scavenging the superoxide
radical that is liberated from the microglia (Gao et al.,
2002). Since rotenone recapitulates several mechanisms of PD
pathogenesis, this pesticide is currently used as a toxicological
model to study the underlying mechanisms on the PD
development.

Despite the widespread use of OP insecticides such as
malathion, methyl parathion, chlorpyriphos and diazinon, not
many studies have evaluated the association between specific
OP and PD risk. Dhillon et al. (2008) found a 2–fold increase
(OR = 2.0, 95% CI, 1.02–3.8) in the risk of PD in Texan
agricultural workers exposed to chlorpyriphos (cases = 100,
controls = 84) (Dhillon et al., 2008). An increased risk of PD
was also observed in rural residents from California possibly
exposed to high levels of chlorpyriphos (OR = 1.87, 95% CI,
1.05–3.31) and diazinon (OR = 1.75, 95% CI, 1.12–2.76) through
the consumption of contaminated well–water (Gatto et al., 2009).
One study conducted in a population from the Group Health
Cooperative (GHC) inWesternWashington State occupationally
exposed to methyl parathion found a high risk of PD (OR = 8.08,
95%CI, 0.92–70.85), although the association was not statistically
significant (Firestone et al., 2005). This is particularly relevant,
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because parkinsonian effects have been reported in cases of
patients intoxicated with OP (Bhatt et al., 1999).

Solvents
Solvents are widespread used due to their commercial
applications, including metal degreasing, dry cleaning, and
as ingredients of paint thinners and detergents. Some solvents
are lipophilic and thus easily absorbed by the central and
peripheral nervous system tissues (Lock et al., 2013). There are
isolated cases of acute Parkinsonism associated with large solvent
exposures such as in workers exposed to n-hexane (Pezzoli et al.,
1989), and toluene (Papageorgiou et al., 2009), among others.
There is no consistent evidence of the association of solvent
exposure and PD (Wirdefeldt et al., 2011). One case-control
study based on a questionnaire reported an increased risk of
PD by the exposure to organic solvents (OR = 2.78, 95% CI,
1.23–6.26) in 86 PD patients and 86 controls from the Emilia-
Romagna region in Italy (Smargiassi et al., 1998). Another
case–control study reported an increased risk of PD when the
exposure to solvents was above 20 years (OR = 3.59, 95% CI,
1.26–19.26) in 182 cases (vs. 422 controls) identified through
death certificates of the Rolls-Royce PLC national pension fund
archive from employees of five manufacturing locations in
United Kingdom who had any mention of PD (McDonnell et al.,
2003).

Trichloroethylene (TCE) is one of the specific solvents that
has been investigated in detail (Goldman, 2014). Some clinical
case reports have reported the onset of PD in workers exposed
to TCE through chronic inhalation and dermal exposure by
handling TCE, suggesting a potential link between the exposure
to TCE and PD (Kochen et al., 2003; Gash et al., 2008). More
recently, an epidemiologic study in 99 twin pairs discordant for
PD showed that the exposure to TCEwas associated with a 6–fold
increased risk of PD (OR= 6.1, 95%CI, 1.2–33) (Goldman, 2014).
In animal models, TCE may recapitulate several key pathological
features of PD. The systemic exposure of adult rats to TCE
(1000 mg/Kg/day/5 days a week/2 and 6 weeks, oral gavage)
inhibits mitochondrial complex I enzyme activity, increases
oxidative stressmarkers, activates themicroglia, induces nigral α-
syn accumulation and a significant loss of dopaminergic neurons
on the SNpc in a dose-dependent manner, as well as defects in
the rotarod behavior test (Liu et al., 2010). In a similar way, the
administration of n-hexane and its metabolite 2, 5-hexanedione
(400 mg/Kg/day/5 days a week/6 weeks, i.p.) to mice caused
that both chemicals reduced the striatal dopamine concentration
by 38 and 33%, respectively, but neuronal cell loss was not
confirmed (Pezzoli et al., 1990). On the other hand, there is no
evidence that acute or subchronic exposure to toluene promotes
the degeneration of the nigrostriatal dopamine system (Lock
et al., 2013).

Nanoparticles and PD
Nanoparticles are an important alternative in the development of
treatment strategies for neurodegenerative diseases due to their
small particle size, large surface and high drug loading efficiency,
which allow them to cross the blood-brain barrier and efficiently
release specific drugs (Li et al., 2014b; Leyva-Gómez et al., 2015).

However, their small size allows them to penetrate the cell and
organelles, disrupting their normal function (Buzea et al., 2007).

Although some NPs are being used in therapies for PD,
no epidemiological studies are available associating them with
PD risk. However, there is evidence suggesting that they could
contribute to alter the molecular mechanisms involved in the
pathogenesis of PD. Thus, it was reported that intranasal
instillation of SiO2-NPs (20 µg/day/1–7 days) to rats resulted
in their presence in the striatum, the induction of oxidative
damage, an inflammatory response, and depleted dopamine
concentration and tyrosine hydroxylase levels, suggesting that
these NPs have a negative impact on striatal dopaminergic
neurons (Wu et al., 2011). Another report in adult zebrafish
exposed to SiO2-NPs (300 and 1000 µg/mL; 15 and 50-nm of
size) showed alterations in neurobehavioral parameters (general,
cognitive behavior and locomotive activity), with the most
significant effects observed with the smallest NPs, similar to
those observed in neurodegenerative diseases (Li et al., 2014b).
In vitro studies also support the potential contribution of NPs
in PD development. The exposure of dopaminergic neurons
(PC12 cells) to SiO2-NPs (25–200 µg/mL/24 h) triggered an
oxidative stress, disturbed the cell cycle, induced apoptosis, and
activated the p53-mediated signaling pathway (Wu et al., 2011);
while the exposure of these cells to TiO2-NPs (50, 100 and
200 mg/mL/24 h) induced a dose–dependent increase in the
expression and aggregation of α-syn, as well as a reduction
of the expressions of Parkin (E3 ligase), and the ubiquitin
C-terminal hydrolase (UCH-L1), these events were associated
with increased oxidative stress (Wu and Xie, 2014). Also,
the exposure PC12 cells to iron oxide (Fe2O3-NPs; 0.15–15
mM) decreased the neurite growth in response to the nerve
growth factor (NGF) (Pisanic et al., 2007). Likewise, citrate-
capped gold nanoparticles (Au-NPs; 0.3–32 nM, 10–22 nm)
produced a dose-dependent aggregation of purified α-syn,
being strongest for the smallest NPs (Alvarez et al., 2013).
In contrast, the administration of Neurotensin (NTS)-polyplex
NPs (8.5 nmol/Kg, i.v), a nanocarrier gene with a potential for
nanomedicine-based applications for PD treatment, to BALB/c
mice does not produce systemic inflammatory (up to 24 h
after treatment) nor hepatic cytotoxicity (at 24 and 96 h after
treatment), supporting the safety of these NTS-polyplex NPs as
a potential therapeutic approach (Hernandez et al., 2014).

Early Exposure to Environmental Factors and AD
or PD Development: Epigenetic Evidence
Epigenetic DNA modifications include DNA methylation,
histone post-translational modifications (mainly acetylation)
and miRNAs (Holliday, 2006). DNA methylation is one of
the most studied epigenetic modifications that influence the
gene expression. It involves the addition of methyl groups to
cytosine bases located at cytosine–phosphate–guanine (CpG)
sites by the action of DNA methyltransferases (DNMTs).
Alterations in DNA methylation on the promoter regions of
genes regulate the gene expression of important processes such as
embryonic development, cellular differentiation and aging (Bird,
2002). Increasing evidence suggests that epigenetic changes
in the developing embryo that may play important roles in
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the susceptibility to diseases in later life (imprinted disease
phenotypes) result from maternal exposures to environmental
stimuli at critical periods of development. This suggests that
a short exposure to chemicals could be memorized through
epigenetic mechanisms long after the chemical trigger has gone
(Jang and Serra, 2014), and recent studies have suggested that
an epigenetic component could be involved in neurodegenerative
diseases related to environmental factors (Marques et al., 2011).

The latent brain expression of genes observed in animals
developmentally exposed to an environmental contaminant may
be mediated through epigenetic pathways that are regulated
via the DNA methylation. While the conditions leading to
early life hypo- or hyper-methylation of specific genes are not
known, both can induce oxidative DNA damage; for instance
the hypo-methylation of APP gene increases its expression
driving the overproduction of APP and Aβ levels, which in
turn facilitate the ROS production damaging the DNA, and
producing neuronal loss. While the hyper-methylation affects
the gene transcription and DNA repair pathways. Therefore,
both changes in DNA methylation can impact gene expression
and imprint susceptibility to oxidative DNA damage in the
aged brain (Zawia et al., 2009). Thus, it is suggested that Pb
interferes with the DNA methylating capacity, thus altering the
expression of AD-related genes. The study performed in aged
monkeys developmentally exposed to Pb revealed a reduced
activity of brain Dnmt, and the exposure of mouse primary
cells from the cerebral cortex to Pb (0.1 µM) resulted in a
similar effect on Dnmt1 activity a week after 24 h-treatment
(Wu et al., 2008). Also, Bihaqi and Zawia (2012) showed a
significant latent increase in AD biomarkers an a reduction in the
protein and mRNA levels of DNA methylating enzymes Dnmt1
and Dnmt3a, and methyl CpG binding protein 2 (MeCP2) in
differentiated SH-SY5Y cells treated with Pb (5–100 µM/48 h)
and analyzed 6 days later (Bihaqi and Zawia, 2012). Aberrant
CpG methylation in APP, Tau and GSK3β genes was reported in
post-mortem brains (Iwata et al., 2014). In addition, it suggested
that reduced levels of CpG methylation in the promoter of
APP could be mediated by the oxidation of guanine (8-oxdG)
(Zawia et al., 2009); this is because the oxidation of guanine
in CpG dinucleotides inhibits adjacent cytosine methylation
(Weitzman et al., 1994). On the other hand, Cd, another metal
involved in AD pathology, reduces the enzymatic activity of
Dnmt in rat liver cell cultures (Poirier and Vlasova, 2002), but
this effect has not been evaluated in cerebral cells. While a
study showed that subchronic As exposure (3 and 36 ppm/from
gestation until 4 months of age) altered the methylation of genes
involved in neuronal plasticity, including reelin (RELN) and
protein phosphatase 1 (PP1), which was associated with memory
deficits (Martínez et al., 2011). Regarding other compounds, the
perinatal exposure to permethrin (34 mg/Kg/daily, by gavage
from postnatal day 6–21) to mice showed altered brain functions
including biomarkers of maintenance of dopaminergic neurons,
and impairment of spatial memory at 6 months of age (Nasuti
et al., 2013).

The relation between epigenetic modifications and PD has
been less studied; however, a potential role of DNA methylation
in the promoter of α-syn encoding gene (SNCA) in the

neuropathogenesis of PD has been suggested, considering that α-
syn is a fundamental component of LB, the main hallmark of PD
(Lu et al., 2013). A DNA hypomethylation of SNCA was reported
in the substantia nigra of sporadic PD patients, suggesting that
it might contribute to the dysregulation of SNCA expression in
PD (Jowaed et al., 2010; Matsumoto et al., 2010). In addition,
increased SNCA mRNA levels were observed in SNpc of PD
(Chiba-Falek et al., 2006), and reduced levels of Dnmt1 have
been observed in postmortem brains from PD and dementia
with LB (DLB) patients, as well as in brains of α-syn transgenic
mice; authors suggest that this effect could be a novel mechanism
of epigenetic dysregulation in LB-related diseases such as PD
(Desplats et al., 2011). Finally, a lesser degree of methyation
of the TNFα promoter, a key inflammatory cytokine associated
with dopaminergic cell death was observed in the SNpc from
PD patients, predisposing to an increase neuronal vulnerability
to inflammatory reactions (Mogi et al., 1996; Pieper et al., 2008).

Environmental factors associated with an increased risk of PD
such as pesticides can alter the expression of genes by epigenetic
mechanisms (Kwok, 2010). It was reported that pre-treatment
with 5-aza-2’deoxycytidine (5’-aza-dC, a DNMT inhibitor)
exacerbated the dopaminergic neuron damage induced by PQ,
MPP+, 6-hydroxydopamine (6-OHDA) and rotenone treatment,
and induced oxidative stress, the transcriptional up-regulation
of α-syn, and demethylation of the α-syn promoter (Wang
et al., 2013). Likewise, the folate deficiency sensitizes mice
to MPTP-induced PD-like pathology and motor dysfunction
(Duan et al., 2002); it is well known that folate deficiency alters
the development of human nervous system (Greenblatt et al.,
1994).

On the other hand, it was reported that the exposure to
environmental neurotoxicants associated with PD during early
life or pregnancy can determine the progressive damage of the
substantia nigra years before the onset of clinical parkinsonism,
as well as to increase the vulnerability to effects of a second
environmental factor (two–hit model) (Logroscino, 2005).
A study in C57BL/6 mice daily treated with pQ (0.3 mg/Kg)
or maneb (1 mg/Kg) or PQ + maneb from postnatal day 5–19
and then re-exposed as adults to PQ (10 mg/Kg) or maneb
(30 mg/Kg) or PQ + maneb (twice a week/3 weeks) showed
that dopaminergic cell loss and decreased dopamine levels were
amplified by the adult re-challenge to the pesticides, suggesting
that the developmental exposure to neurotoxins enhanced the
adult susceptibility to a new toxic insult (Thiruchelvam et al.,
2002). Similarly, prenatal exposure of pregnant C57BL/6J mice
to PQ (0.3 mg/Kg) or maneb (1 mg/Kg) altered the development
of the nigrostriatal system and enhanced its vulnerability to
neurotoxins later in life, which could contribute with the
development of PD during aging (Barlow et al., 2004).

Although there is no direct evidence linking early exposure to
environmental pollutants and epigenetic changes with increased
susceptibility to LOPD, there is a plausible association based on
the following considerations: (1) epigenetic alterations have been
observed in PD brains; (2) the exposure to environmental factors
is associated with an increased risk of LOPD development and
factors such as pesticides and metals can alter mechanisms of
epigenetic regulation such as DNA methylation; and (3) early
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exposure to environmental pollutants might be associated with
LOPD later in life. Further studies are needed to confirm this
hypothesis in this promising research field to understand the
mechanisms underlying the long-term effects of the environment
on the PD development.

Concluding Remarks

The emerging association between exposures to several toxic
compounds with neurodegenerative diseases is of considerable
public health importance, given the increasing dementia
prevalence, the negative social and economic consequences
of neurodegeneration-related disabilities, and the increasing
environmental pollution in some geographic areas worldwide.
Some of the epidemiological studies show not consistent results
on getting significant estimates of hazard risk for AD or PD,
mainly due to some limitations that include the difficulty
on accurate diagnosis for AD or PD cases due to the lack
of specific biomarkers, the deficiency to accurately assess
chronic exposures, and/or the lack of inclusion of important
confounding variables such as co-exposure to toxic compounds,
genetic variants and lifestyle among others. Nevertheless,
epidemiological studies along with experimental data have led
to highlight the potential risk to develop these degenerative
diseases due to the exposure to environmental pollutants such
as metals, NPs and pesticides, among others. Interestingly,
these pollutants show similar mechanisms of toxicity, which
converge in a generalized mechanism based on the generation
of oxidative stress that leads to common hallmarks of both
neurodegenerative disorders. For example, the generation of
oxidative stress by increasing the production of ROS and/or
deregulating the antioxidant enzymes promotes the formation

of protein aggregates such as Tau, Aβ or α-syn. This in
turn overwhelms the degradation systems, and produces the
activation of the glia inducing neuroinflammation, a process
that per se increases the generation of further oxidative stress
leading to a self-perpetuating cycle, and finally to neuronal loss
of specific brain region such as the hippocampus and cerebral
cortex in AD and substantia nigra in PD. The oxidative stress
induced by these neurotoxicants activates/inhibits signaling
pathways leading to augmented/diminished activity of enzymes
that promote the accumulation of toxic materials in neural
cells such as damaged/aberrant proteins, Aβ in AD or α–syn
in PD and oxidative byproducts, or the oxidation of DNA
that can alter genetic or epigenetic regulation. Furthermore,
the link between early life exposure to environmental factors
and the origin of neurodegenerative diseases is getting attention
and can help to clarify the role of the environment on
the development of these degenerative diseases. On the
other hand, the lack of specific/differential biomarkers for
AD or PD limits the early diagnosis and then the timely
treatment. In this regard, specific circulating miRNAs have
been associated with pathological processes such as AD and
PD, therefore they are promising non-invasive biomarkers for
these neurological diseases. Additionally, the identification of
biomarkers to determine the past exposure to environmental
pollutants is of vital importance for a better and opportune
management of these diseases. Thus, as we have more knowledge
of the risk from the exposure to environmental pollutants,
more well-designed epidemiological studies (controlling for
as many variables as possible and with high sample sizes)
are necessary to improve the quality of life of elderly and
to prevent the development of neurodegenerative diseases
worldwide.
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