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We discuss effects of stochasticity and  time delays in simple models of population dynamics. In social- type models, where individuals react to the  information concerning the  state of the  population at some earlier time, sufficiently large  time delays may  cause oscillations. In biological-type models, where some changes already take  place  in the  population at an earlier time, oscillations might not  be present for any time delay.  We illustrate this  idea  in models of delayed random walks, gene expression, and  population dynamics of evolutionary game theory.
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1.  Introduction
Many socio-economic and biological processes can  be modeled as systems of interacting objects. One  may then try  to derive their global behavior from individual interactions between their basic entities such as  animals in  ecological and evolutionary models, RNA  and  protein  molecules in   biochemical reactions  of  gene expression and regulation, and people in  social processes. If the number of interacting objects is small, to describe and analyze the time evolution of such systems we should use stochastic modeling.
It  was usually assumed that reactions take place instanta-
neously and effects of individual interactions are  immediate. In re- ality, all biochemical processes take a certain time and there is a substantial time delay between the beginning of a reaction and the appearance of new products in  the system. Similarly, in  ecologi- cal models results of interactions between individuals may appear in the future, and in social models, individuals or players may act, that is choose appropriate strategies, on  the basis of the informa- tion concerning events in the past.
It  is  well known that time delays may cause oscillations in
solutions of ordinary differential equations [1–5]. The  main goal of this paper is to  show that the presence of oscillations depends on  particular causes of a time delay. We  divide models with time delays into two families. In social-type models, where individuals react to  the information concerning the state of  the population at some earlier time, we  should expect oscillations. On the other hand, in biological-type models, where some changes already take
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place in  the population at an  earlier time, oscillations might not be  present for  any  time delay. We  illustrate our  idea with two examples: gene expression with a  delayed degradation and an evolutionary game with the stable coexistence of two strategies.
It  was argued recently in  [6]  that  combined effects of  the time delay of protein degradation and stochasticity may cause an oscillatory behavior in  simple models of gene expression. It was shown in  [7]  that if one assumes that a  process of  degradation is consuming, that is molecules which started to  degrade cannot take part in other processes, then oscillatory behavior is no longer present in such systems. The key point here is that although protein molecules will completely degrade at some time in the future, they have already changed the state of the system at an earlier time. We say that such models are  of biological type. However, if we  change the model and allow protein molecules to  be  chosen many times for degradation, that is we do not see any  change at an earlier time, then we  obtain formally a delayed random walk of a social type [8,9]. In such a random walk, oscillations are present for sufficiently large delays. We  compare here these two models and show that they are  equivalent in  the limit of small time delays. We  derive an analytical expression for the variance of the number of protein molecules in a simple model of gene expression with a time-delay degradation.
We will also discuss two evolutionary game theory models with stationary coexistence of two strategies in the replicator dynam- ics [10,11]. In the social-type model, players imitate opponents tak- ing  into account average payoffs of games played some time ago. In the biological-type model, new players are  born from parents who played in the past. We show that in the first type of dynamics, the stationary point is asymptotically stable for small time delays and becomes unstable for big ones. In the second type of dynamics,
0266-8920/$ – see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.probengmech.2010.06.004
however, the stationary point is asymptotically stable for any  time delay.
2.  Random walk with a time delay
One  of  the simplest models involving both stochasticity and time delays is a delayed random walk [8,9].  In such a walk, tran- sition probabilities at time t depend on the position of the walker at time t − τ . In [8], a delayed random walk was considered, where in  the absence of delays, the transition toward the origin (a  sta- ble  point) is  more probable than the outward transition, other- wise transition probabilities are position independent. The authors shown that the mean square displacement of the walker, that is the variance, approaches a stationary value in an oscillatory man- ner for  large time delays and in a monotonic way for  small ones. Moreover, this stationary value is a linear function of the delay and the coefficient of proportionality is a linear function of the transi- tion probability. In [9], the transition probability towards the origin was assumed to increase linearly with the distance to the origin up to the distance above which it was set  constant as in the previous model. It was proved that in  the stationary state, the autocorre-
lation function of the position of the walker, ⟨Xt Xt −τ ⟩, is τ inde- pendent and ⟨Xt Xt −u ⟩ has  an oscillatory behavior as a function of u
for large delays. Continuous (in time and space) analogs of delayed random walks were analyzed in [9,12,13]. The following Langevin equation was considered,
dx
dt = −β x(t − τ ) + ξt ,                                                (2.1)
where x  is  a  continuous variable denoting the position of  the walker and ξt  is a time uncorrelated random shock, that is ⟨ξt ξs ⟩ = δ(t − s). In the rigorous presentation, the above equation has  the
form of the Ito¯  equation,
dx = −β x(t − τ )dt + dW ,                                           (2.2)
where W  is the standard Wiener process with the zero expected value and the unit variance.
In [12], the stationary variance of such a process was calculated,
1 + sin β τ

dx
dt = k − γ x(t ),                                                                       (3.1)
where k is the intensity of production and γ the intensity of degra- dation.
Assume now that the degradation process takes some time, that is  molecules are  completely degraded τ  units of  time after the delayed degradation is triggered. We are  tempted to model such a phenomenon by the following time-delay differential equation [6]:
dx
dt = k − γ x(t − τ ).                                                                (3.2)
After  a simple change of the variable x, the shift x → x − k/γ , we  obtain a deterministic term in (2.1).
Delayed random walk models and Langevin equations like (2.1) correctly describe real processes if the rate of change of the size  of the population at time t depends on  the size  of the population at
some earlier time t − τ but there is no change in the population at
time t − τ . We may refer to such models as of social type.
On  the contrary, in  our  production–degradation model, some molecules undergo a change at time t − τ —they  start to degrade,
therefore they cannot be chosen for degradation again so in a sense they are   not active and cannot be  taken again into account in calculating the future rate of change of the size  of the population. The  differential equation (3.2)   does not take this into account. Degrading molecules affect the concentration at the future time and in the meantime they may again take part in another process of degradation. Therefore they may be subtracted from the system several times and this may make the size of the population negative which is  unacceptable in  biological models.  This  is  a  frequent problem that solutions of time-delay differential equations with positive initial conditions may become negative [15].
In  [7]  we   developed a  new methodology to  deal with time delays in biological systems. It is based on the division of reactions into consuming and non-consuming ones [16,17]. We applied it to simple gene expression models with a delayed degradation. When a molecule starts to degrade then we consider it inactive (it cannot take part in another reaction) but it is still  in the system and hence
it is visible. Such  reactions are  called consuming. Let us denote by
Var(x) =

.                                                               (2.3)
2β cos β τ

x the concentration of active molecules and by y the concentration of all molecules present in the system. We  arrive at the following
For small time delays, the linearization of (2.3)  gives us
1
Var(x) = 2β (1 + β τ ).                                                             (2.4)
Small-delay expansions and corresponding Fokker–Planck equations were analyzed in [13,14] where original delay systems were approximated by  non-delayed stochastic differential equa- tions.
In  the  following section we   take a  different  approach.  To
describe  fluctuations  in   finite  systems  of   objects/individuals, we  model their time evolution by  appropriate birth and death processes. We  will  discuss simple stochastic models of gene ex- pression. In  our  first model, mRNA  molecules are  produced and are  subject to  a time delay degradation. We  will  compare such a stochastic process with the delayed random walk described above and discuss fundamental differences between these two models. We  will  show that in  the limit of  small delays both models are equivalent and we  will  re-derive (2.4).
3.  Delayed degradation
In the simplest production–degradation system, mRNA  mole- cules are  produced and degrade with constant intensities. Let us denote by x(t ) the concentration of mRNA molecules at time t . The classical equation of chemical kinetics, i.e.  the time evolution of x(t ), then reads:

equations for x and y:
dx
dt = k − γ x(t ),                                                                       (3.3)
dy
dt = k − γ x(t − τ ).
Such  a  system of  equations can  be  easily solved; it  does not exhibit any  cyclic  behavior [7] as opposed to (3.2)  where for some critical τ the population undergoes the Hopf  bifurcation and there appears a limit cycle  [1–5].
In many cases, biochemical processes take place in  small vol- umes and may involve only a  few  molecules. The  deterministic approach dealing with macroscopic concentrations of molecules is  then inappropriate. A small number of  molecules taking part in  gene expression results in  significant random fluctuations. To take into account such fluctuations, many stochastic models in- volving Master, Fokker–Planck, and Langevin equations were an- alyzed [18–26] and appropriate birth and death processes were simulated by the Gillespie algorithm [27].
Stochastic dynamics with  time  delays were recently inves- tigated in  [6,8,9,12–14,28–32]. In  [6],  the authors argued that combined stochasticity and time delay cause oscillations in  gene expression with a delayed degradation.
In  [7],  we   used a  generating  function approach  to   Master equations corresponding to (3.3)  and showed that the variance of
the total number of mRNA molecules in the stationary state is equal to its expected value,
Var(y)  = ⟨y⟩ = ⟨x⟩(1 + γ τ ),                                                   (3.4)

We  will  show now that Var(r ) in (3.11) is exactly the same as in (2.4).  The following Langevin equation corresponds to our  birth and death process without a time delay (compare (2.1)):
where ⟨x⟩  =    k
molecules.

is  the expected value of  the number of  active

dx
dt = k − γ x + σ ξt .                                                               (3.12)
In  the limit of small delays, when in  the time interval of the

We integrate (3.12) and get
length τ only one reaction can  take place, (3.2)  correctly describes both the social and biological delays and we  re-derive (3.4)  which is consistent with (2.4).

       k 2
x
γ

                          ∫ t
=   x(0)e−γ t  + e−γ t
0


eγ s (k + σ ξ (s)) ds −

k 2
. γ
In the stochastic description of (3.2)  we  interpret k and γ  as
intensities of birth (production) and death (degradation) processes. The  state of the system at time t is described by  the number of mRNA molecules, r . Let P (r , t ) be  the probability that the system

(3.13) In the stationary state, that is in  the limit t  → ∞, from the
above equation we  obtain
is in the state r at the time t and P (r , t ; m, t −τ ) the probability that
we  have r molecules at time t and m molecules at time t − τ . We
use  the standard assumptions of birth and death processes, that

       k 2 
x − γ

σ 2
= 2γ .                                                             (3.14)
is events in  non-overlapping time intervals are  independent, the probability of a reaction is proportional to  the length of the time interval, and the probability of two or more reactions is of a lower order and we  write
−∞

On the other hand, we  know that Var(x) = ⟨x⟩ =  k  in the birth and death process, therefore we  get
σ 2  = 2k,                                                                      (3.15)
and finally we  see  that (2.4)  and (3.11) coincide.
P (r , t + h) = khP (r − 1, t ) + γ h
−∞


m=0

mP (r + 1, t ; m, t − τ )


4.  Gene expression with a delayed degradation
+ (1 − kh)P (r , t ) − γ h


m=0

mP (r , t ; m, t − τ ).                    (3.5)

We now consider the classical model of gene expression involv- ing  four  biochemical processes: transcription, translation, mRNA
Now  we  take P (r , t ) into the left-hand side, divide (3.5)  by h, take

and protein degradation [21]:
the limit h → 0 and obtain the following Master equation [33]:                     k                                                      γr
dP (r , t )

DNA −→ mRNA,  mRNA −→ ∅,
dt      = k(P (r − 1, t ) − P (r , t ))

kp                            γp

(4.1)
−∞
+ γ
m=0
−∞
− γ
m=0


mP (r + 1, t ; m, t − τ )
mP (r , t ; m, t − τ ).                                  (3.6)

mRNA −→ P ,   P −→ ∅.
In the stochastic description, deterministic rates of the above reactions are  interpreted as intensities of corresponding birth and death processes. The  analytical expression for  the variance of the number of protein molecules p in the stationary state was derived in [21]:
We introduce the generating function
−∞


Var(p)  = ⟨p⟩   1 +

kp
γr   + γp


,                                       (4.2)
G(u, t ; w, t − τ ) =


r ,m=0

f (r , t ; m, t − τ )ur wm .                     (3.7)

where ⟨p⟩  =

kr kp
γr γp


is the expected value of the number of protein
We  differentiate (3.7)  with respect to  time, use  (3.6),  then differ- entiate twice with respect to u, set  u = w = 1 and obtain
d⟨r (r − 1)⟩
dt        = 2k⟨r (t )⟩ + 2γ ⟨r (t − τ )⟩ − 2γ ⟨r (t )r (t − τ )⟩. (3.8)
In the stationary state we  get

molecules.
As in the previous section, we  assume that protein degradation takes some time and we  model it  by  a  single process with the time delay τ . In  [7],  the authors used the generating function approach to Master equations and derived the expected value and the variance of the number of protein molecules in the stationary state. Here we re-derive those results in the small τ limit. We might
k  
⟨r (t )r (t − τ )⟩ = γ

k 
1 + γ


.                                                (3.9)

repeat the procedure from the previous section. Instead we will use directly the methodology developed in [7].
Let r (t ) be  the number of mRNA  molecules, p(t ) the number
We  see  that the autocorrelation function at the time separation τ
is τ independent. The same result was obtained in the delayed ran-
dom walk in [9].
Now  we proceed to obtain the formula for the variance of r . We assume that during the time interval [t − τ , t ] only one reaction can take place. Therefore r (t ) can be equal to r (t − τ ) + 1 with the probability kτ , to r (t − τ ) − 1 with the probability γ r (t − τ )τ , and to r (t − τ ) with the remaining probability. It follows that
⟨r (t )r (t − τ )⟩ = ⟨r 2 (t − τ )⟩(1  − γ τ ) + kτ ⟨r (t − τ )⟩.         (3.10) We  combine (3.9)  and (3.10), get  an  expression for  ⟨r 2 ⟩ and therefore for the variance, expand it in τ , keep only a linear term
and get
k
Var(r ) = ⟨r ⟩(1 + γ τ ) = γ (1 + γ τ ).                                    (3.11)

of active protein molecules at time t , d(t ) the number of delayed protein degradations initiated since the time t  = 0, and y(t ) the total number of protein molecules related to p(t ), d(t ), and d(t −τ ) in the following way:
y(t ) = p(t ) + d(t ) − d(t − τ ).                                                 (4.3) It is easy to  see  that in  the stationary state we  have ⟨(d(t ) −
d(t − τ ))⟩ = γp ⟨p⟩τ . It follows that
⟨y⟩ = ⟨p⟩(1 + γp τ ).                                                                  (4.4) For the variance of the total number of protein molecules we
write
Var(y(t )) = Var(p(t ) + d(t ) − d(t − τ ))
= Var(p(t )) + Var(d(t ) − d(t − τ ))
+ 2Cov(p(t )(d(t ) − d(t − τ ))).                           (4.5)
For  small time delays, we  assume that only one reaction can take place in  any  time interval [t − τ , t ] and therefore ⟨(d(t ) −
2

ri (t + ϵ) = (1 − ϵ)ri (t ) + ϵri (t )Ui (t );  i = A, B,                   (5.1)
where UA (t ) = ax(t ) + b(1 − x(t )) and UB (t ) = cx(t ) + d(1 − x(t ))
d(t − τ ))2 ⟩ = ⟨d(t ) − d(t − τ )⟩. Because ⟨d(t ) − d(t − τ )⟩

is of

are  average payoffs of individuals playing A

and B

respectively. We
the order τ 2 , then for small τ we  get  that Var(d(t − τ ) − d(t )) =
⟨d(t ) − d(t − τ )⟩ = γp ⟨p⟩τ .
Now in order to get Var(y) we need to compute Cov(p(t )(d(t ) −
d(t − τ ))) in the stationary state. For small τ we  can  write
⟨p(t )(d(t ) − d(t − τ ))⟩
−∞

assume that all payoffs are  not smaller than 0, hence rA  and rB  are always non-negative and therefore 0 ≤ x ≤ 1.
The equation for the total number of players reads
r (t + ϵ) = (1 − ϵ)r (t ) + ϵr (t )U¯ (t ),                                        (5.2)
where U¯ (t ) = x(t )UA (t ) + (1 − x(t ))UB (t ) is the average payoff
=
m=0

mP (d(t ) − d(t − τ ) = 1|p(t − τ ) = m + 1)

in the population at the time t . When we  divide (5.1)  by (5.2)  we obtain an equation for the frequency of the strategy A,

× P (p(t − τ ) = m + 1)
−∞


x(t + ϵ) − x(t ) = ϵ

x(t )[UA (t ) − U¯ (t )]


.                                  (5.3)
= γp τ


m=0

m(m  + 1)P (p = m + 1) = γp τ (⟨p2 ⟩ − ⟨p⟩).        (4.6)

1 − ϵ + ϵU¯ (t )
Now we divide both sides of (5.3) by ϵ, perform the limit ϵ → 0,
Hence we  get  that
Cov(p(t )(d(t ) − d(t − τ ))) = ⟨p⟩ γ


kp
γp τ                          (4.7)
γ

and obtain the well known differential replicator equation,
dx(t )
dt    = x(t )[UA (t ) − U¯ (t )].                                                     (5.4)
and finally

r  +   p


The above equation can  also  be written as
kp                                                                                             dx(t )


x(t )(1


x(t )) U (t )


U (t )
Var(y)  = Var(p)(1 + γp τ ) + ⟨p⟩
r  +

γp τ .                          (4.8)
γp

dt    =

−        [  A


−   B       ]
The above formula coincides with the linear approximation of the variance obtained in [7].
We  can  repeat the above methodology to  re-derive (3.11) for the simple production–degradation model. In  this case Cov(r (t ) (d(t ) − d(t − τ ))) = 0 and (3.11) follows immediately.
5.  Replicator dynamics
The  evolution of  populations can   often be  described within game-theoretic models [34–39]. In such models, players have at their disposal certain strategies and their payoffs in a game depend on strategies chosen both by them and by their opponents. The cen- tral concept in game theory is that of a Nash equilibrium. It is an assignment of strategies to  players such that no  player, for  fixed strategies of his  opponents, has  an  incentive to  deviate from his current strategy—no change can  increase his  payoff. The dynami- cal  interpretation of Nash equilibria was provided by  several au- thors [40–42]. They proposed a system of difference or differential replicator equations which describe the time-evolution of fractions of the population playing different strategies. Nash equilibria are stationary points of such dynamics.
Imagine a  finite but a  very large population  of  individuals.
Assume that they are  paired randomly to  play a symmetric two-

= (a − c + d − b)x(t )(1 − x(t ))(x(t ) − x∗ ),                (5.5)
where x∗  = (d − b)/(a − c + d − b). We  will  assume now that
c   > a and b  > d so  x∗ is the unique mixed Nash equilibrium,
globally asymptotically stable in  (5.4).  We  will  introduce a time delay into discrete Eq. (5.1)  in two different ways. The  main goal of this section is to demonstrate that the long-time behavior of the population depends on the particular time-delay mechanism.
5.1.  Social-type time  delay
Here we  assume that individuals at time t replicate due to average payoffs obtained by their strategies at time t − τ for some delay τ > 0. The following equations were proposed in [10]:
ri (t + ϵ) = (1 − ϵ)ri (t ) + ϵri (t )Ui (t − τ );  i = A, B.            (5.6) Then for the total number of players we  get
r (t + ϵ) = (1 − ϵ)r (t ) + ϵr (t )U¯ o (t − τ ),                               (5.7)
where U¯ o (t − τ ) = x(t )UA (t − τ ) + (1 − x(t ))UB (t − τ ).
Now  we  proceed as before and get
x(t + ϵ) − x(t ) = −ϵx(t )(1 − x(t ))[x(t − τ ) − x∗ ]
δ
player game with two strategies and the following payoff matrix:
A    B

× 1 − ϵ + ϵU¯ o (t − τ )

.                              (5.8)
U =   A    a     b
B    c     d,
where Ukl , k, l = A, B, is a payoff of the first (row) player when he

The corresponding replicator dynamics in the continuous time
then reads
dx(t )
x(t )[UA   t − τ ) − U¯ o   t − τ )]                                   (5.9)
plays the strategy k and the second (column) player plays the strat-
egy l. We assume that both players are  the same and hence payoffs of the column player are given by the matrix transposed to U ; such games are  called symmetric.
We are  interested in fractions of the population playing respec-
tive  strategies. We assume that individuals receive average payoffs with respect to all possible opponents—they play against the aver- age  strategy.
Let  ri (t ), i  =  A, B, be  the number of  individuals playing the
strategy A and B respectively at the time t . Then r (t ) = rA (t )+rB (t )
is the total number of players and x(t ) = rA (t )  is the fraction of the
population playing A at time t .

We  assume that during the small time interval ϵ, only an  ϵ fraction of the population takes part in pairwise competitions, that is plays games. We write

dt    =            (                   (
and can  also  be written as dx(t )
dt    = x(t )(1 − x(t ))[UA (t − τ ) − UB (t − τ )]
= −δx(t )(1 − x(t ))(x(t − τ ) − x∗ ).                           (5.10) The  first equation in (5.10) can  also  be  interpreted as  follows.
Assume that randomly chosen players imitate randomly chosen
opponents. Then the probability that a player who played A would imitate the opponent who played B at time t is exactly x(t )(1  − x(t )). The intensity of imitation depends on  the delayed informa- tion about the difference of corresponding payoffs at time t − τ . We will  say that such models have a social-type time delay.
Eq.   (5.10)  is   exactly  the  time-delay  replicator  dynamics proposed and analyzed by Tao and Wang [43]. They showed that if
τ < π (c −a+b−d)/2(c −a)(b−d) = τcr , then x∗ is asymptotically stable. When τ passes through τcr , x∗ becomes unstable. In [10], we
proved directly (i.e. without referring to  the theory of time-delay equations) the following theorem:
Theorem 1.  x∗ is asymptotically stable in the  dynamics (5.8)  if  τ is sufficiently small  and  unstable for large  enough τ .

5.2.  Biological-type time  delay
Here we  assume that individuals born at time t − τ are  able to  take part in  contests when they become mature at time t or equivalently they are born τ units of time after their parents played and  received  payoffs. The   following equations  were  proposed in [10]:
ri (t + ϵ) = (1 − ϵ)ri (t ) + ϵri (t − τ )Ui (t − τ );  i = A, B.   (5.11) Then the equation for the total number of players reads
r (t + ϵ) = (1 − ϵ)r (t ) + ϵr (t )

Acknowledgement
I would like  to thank the Polish Ministry of Science and Higher
Education for financial support under the grant N201 023 31/2069.
References
[1]  Györi   I,  Ladas   G.  Oscillation theory  of  delay differential equations with applications. Clarendon; 1991.
[2]  Gopalsamy K. Stability and  oscillations in  delay differential  equations  of population. Springer; 1992.
[3]  Kuang    Y.  Delay   differential  equations  with  applications  in   population dynamics. Academic Press Inc.; 1993.
[4]  Hale  J. Theory of functional differential equations. New  York: Springer; 1997. [5]  Foryś U. Biological delay systems and the Mikhailov criterion of stability. J Biol
Syst 2004;12:1–16.
[6]  Bratsun  D,  Volfson  D,  Tsimring  LS,  Hasty  J.  Delay-induced  stochastic oscillations in gene regulation. Proc Natl Acad Sci USA 2005;102:14593–8.
[7]  Mie¸ kisz   J,  Poleszczuk  J,  Bodnar  M,  Foryś   U.  Stochastic  models  of  gene expression with time delays. Preprint. 2010.
[8]  Ohira T, Milton JG. Delayed random walks. Phys  Rev E 1995;52:3277–80.
[9]  Ohira T. Oscillatory correlation of delayed random walks. Phys Rev E 1997;55:
[ x(t )rA (t − τ ) U (t
×         rA (t )


− τ )
]

R1255–8.
[10]   Alboszta J, Mie¸ kisz  J. Stability of evolutionarily stable strategies in  discrete replicator dynamics. J Theoret Biol 2004;231:175–9.
[11]   Mie¸ kisz J. Evolutionary game theory and population dynamics. In: Capasso V,
(1 − x(t ))rB (t − τ ) U (t
+            rB (t )

− τ )


.                      (5.12)

Lachowicz  M,   editors.  Multiscale  problems  in   the  life   sciences,  from microscopic to  macroscopic. Lecture notes in mathematics, vol. 1940. 2008. p. 269–316.
For the frequency of the first strategy we  get  the equation
x(t − τ )UA (t − τ ) − x(t )U¯ (t − τ )

[12]   Küchler U, Mensch B. Langevin stochastic differential equation extended by a time-delayed term. Stoch Stoch Rep 1992;40:23–42.
[13]   Ohira T, Yamane T. Delayed stochastic systems. Phys  Rev E 2000;61:1247–57.
x(t + ϵ) − x(t ) = ϵ

(1 −

ϵ)  r (t )                 (t − τ )

,      (5.13)

[14]   Guillouzic S, L’Heureux I, Longtin A. Small  delay approximation of stochastic delay differential equations. Phys  Rev E 1999;59:3970–82.
[15]   Bodnar M. On the nonnegativity of solutions of delay differential equations.
where U¯ (t − τ ) = x(t − τ )UA (t − τ ) + (1 − x(t − τ ))UB (t − τ ).
The following theorem was proved in [10]:
Theorem 2.  x∗ is asymptotically stable in the dynamics (5.13) for any value of the time  delay  τ .

We  see  that large time delays cause oscillations in  the social- type model and in  the corresponding biological-type model, the stationary state does not lose  stability for any  time delay.
It is important to study the combined effects of stochasticity and
time delays in such models. We hope to present some results in the near future.
6.  Discussion
It is well known that time delays may cause oscillations in solu- tions of ordinary differential equations. Usually a unique globally asymptotically stable stationary point loses the stability for  large time delays. More precisely, there exists a critical time delay at which the system undergoes the Hopf bifurcation and a stable limit cycle  appears. Here we  demonstrated that the presence of oscilla- tions depends on  particular causes of a time delay. In particular, in social-type models, where individuals react to  the information concerning the state of the population at some earlier time, we should expect oscillations. On  the other hand, in  biological-type models, where some physical change already takes place in  the population at an earlier time, oscillations might not be present for any  time delay.
We  compared a  delayed random walk model (a  social-type
model with oscillations) to  a  corresponding production–degra- dation  model (biological-type model without  oscillations). We derived an  analytical expressions for  the variance of the number of protein molecules in a simple model of gene expression with a small time delay degradation. We  also  presented two population dynamics models – evolutionary games – with and without oscillations.
It is important to study more complex systems with time delays,
especially combined effects of time delays and stochasticity, and in particular the possibility of stable oscillations in such systems.

Appl Math Lett 2000;13:91–5.
[16]   Barrio M, Burrage K, Leier  A, Tian  T. Oscillatory regulation of Hes1: discrete stochastic  delay  modelling  and  simulation.  PLOS  Comput  Biol   2006;2:
1017–29.
[17]   Cai X. Exact  stochastic simulation of coupled chemical reactions with delays.
J Chem Phys  2007;126:124108-1–.
[18]   Berg  OG. A model for  the statistical fluctuations of  protein numbers in  a microbial population. J Theoret Biol 1978;71:587–603.
[19]   McAdams HH, Arkin  A. Stochastic mechanisms in gene expression. Proc  Natl
Acad Sci USA 1997;94:814–9.
[20]   Kepler T, Elston T. Stochasticity in transcriptional regulation: origins, conse- quences, and mathematical representations. Biophys J 2001;81:316–36.
[21]   Thattai M, van  Oudenaarden A. Intrinsic noise in gene regulatory networks.
Proc Natl Acad Sci USA 2001;98:8614–9.
[22]   Swain PS,  Elowitz MB,  Siggia   ED. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 2002;99:12795–800.
[23]   Paulsson J. Summing up the noise in gene networks. Nature 2004;427:415–8. [24]   Paulsson J. Models of stochastic gene expression. Phys Life Rev 2005;2:157–75. [25]   Hornos JEM, Schultz D, Innocentini GCP, Wang J, Walczak AM, Onuchic JN, Wolynes PG. Self-regulating gene: an  exact solution. Phys  Rev  E 2005;72:
051907.
[26]   Komorowski M,  Mie¸ kisz  J, Kierzek A. Translational repression contributes greater noise to  gene expression than transcriptional repression. Biophys J
2009;96:372–84.
[27]   Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys
Chem 1997;81:2340–61.
[28]   Mao X, Yuan C, Zou J. Stochastic differential delay equations. J Math Anal Appl
2005;304:296–320.
[29]   Lei J, Mackey MC. Stochastic differential delay equation, moment stability, and application to  hematopoietic stem cell  regulation system. SIAM J Appl  Math
2007;67:387–407.
[30]   Tian   T,  Burrage  K,  Burrage  PM,  Carletti  M.  Stochastic delay  differential equations for  genetic regulatory networks. J  Comput Appl  Math 2007;205:
696–707.
[31]   Galla   T.  Intrinsic  fluctuations  in   stochastic  delay  systems:  theoretical description and application to  a simple model of gene regulation. Phys  Rev E 2009;80:021909.
[32]   Ribeiro AS. Stochastic and delayed stochastic models of gene expression and regulation. Math Biosci 2010;223:1–11.
[33]   van   Kampen NG.  Stochastic processes  in  physics and  chemistry.  2nd  ed.
Amsterdam: Elsevier; 1997.
[34]   Maynard Smith J. Evolution and the theory of games. Cambridge: Cambridge
University Press; 1982.
[35]   Weibull J. Evolutionary game theory. Cambridge (USA): MIT Press; 1995.
[36]   Hofbauer  J,  Sigmund  K.  Evolutionary  games  and  population  dynamics.
Cambridge: Cambridge University Press; 1998.
[37]   Hofbauer J, Sigmund K. Evolutionary game dynamics. Bull  Amer  Math  Soc
2003;40:479–519.
[38]   Nowak MA, Sigmund K. Evolutionary dynamics of biological games. Science
2004;303:793–9.
[39]   Nowak MA. Evolutionary dynamics. Cambridge (USA):  Harvard University
Press; 2006.
[40]   Taylor  PD, Jonker LB. Evolutionarily stable strategy and game dynamics. Math
Biosci 1978;40:145–56.

[41]   Hofbauer J, Schuster P, Sigmund K. A note on  evolutionarily stable strategies and game dynamics. J Theoret Biol 1979;81:609–12.
[42]   Zeeman E. Dynamics of the evolution of animal conflicts. J Theoret Biol 1981;
89:249–70.
[43]   Tao Y, Wang Z. Effect of time delay and evolutionarily stable strategy. J Theoret
Biol 1997;187:111–6.
�








�








γ





−





γ





r





γ





r (t )





A





B





r (t −τ )  + ϵU¯








