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a b s t r a c t

We discuss effects of stochasticity and time delays in simple models of population dynamics. In social-
type models, where individuals react to the information concerning the state of the population at some
earlier time, sufficiently large time delays may cause oscillations. In biological-type models, where some
changes already take place in the population at an earlier time, oscillations might not be present for any
time delay. We illustrate this idea in models of delayed random walks, gene expression, and population
dynamics of evolutionary game theory.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many socio-economic and biological processes can be modeled
as systems of interacting objects. One may then try to derive their
global behavior from individual interactions between their basic
entities such as animals in ecological and evolutionary models,
RNA and protein molecules in biochemical reactions of gene
expression and regulation, and people in social processes. If the
number of interacting objects is small, to describe and analyze the
time evolution of such systemswe should use stochasticmodeling.

It was usually assumed that reactions take place instanta-
neously and effects of individual interactions are immediate. In re-
ality, all biochemical processes take a certain time and there is a
substantial time delay between the beginning of a reaction and the
appearance of new products in the system. Similarly, in ecologi-
cal models results of interactions between individuals may appear
in the future, and in social models, individuals or players may act,
that is choose appropriate strategies, on the basis of the informa-
tion concerning events in the past.

It is well known that time delays may cause oscillations in
solutions of ordinary differential equations [1–5]. The main goal
of this paper is to show that the presence of oscillations depends
on particular causes of a time delay. We divide models with time
delays into two families. In social-type models, where individuals
react to the information concerning the state of the population
at some earlier time, we should expect oscillations. On the other
hand, in biological-type models, where some changes already take
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place in the population at an earlier time, oscillations might not
be present for any time delay. We illustrate our idea with two
examples: gene expression with a delayed degradation and an
evolutionary game with the stable coexistence of two strategies.

It was argued recently in [6] that combined effects of the
time delay of protein degradation and stochasticity may cause an
oscillatory behavior in simple models of gene expression. It was
shown in [7] that if one assumes that a process of degradation
is consuming, that is molecules which started to degrade cannot
take part in other processes, then oscillatory behavior is no longer
present in such systems. The key point here is that althoughprotein
molecules will completely degrade at some time in the future, they
have already changed the state of the system at an earlier time.We
say that such models are of biological type. However, if we change
the model and allow protein molecules to be chosen many times
for degradation, that is we do not see any change at an earlier time,
then we obtain formally a delayed random walk of a social type
[8,9]. In such a randomwalk, oscillations are present for sufficiently
large delays. We compare here these two models and show that
they are equivalent in the limit of small time delays. We derive
an analytical expression for the variance of the number of protein
molecules in a simple model of gene expression with a time-delay
degradation.

Wewill also discuss two evolutionary game theorymodelswith
stationary coexistence of two strategies in the replicator dynam-
ics [10,11]. In the social-typemodel, players imitate opponents tak-
ing into account average payoffs of games played some time ago.
In the biological-type model, new players are born from parents
who played in the past. We show that in the first type of dynamics,
the stationary point is asymptotically stable for small time delays
and becomes unstable for big ones. In the second type of dynamics,
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however, the stationary point is asymptotically stable for any time
delay.

2. Random walk with a time delay

One of the simplest models involving both stochasticity and
time delays is a delayed random walk [8,9]. In such a walk, tran-
sition probabilities at time t depend on the position of the walker
at time t −τ . In [8], a delayed randomwalk was considered, where
in the absence of delays, the transition toward the origin (a sta-
ble point) is more probable than the outward transition, other-
wise transition probabilities are position independent. The authors
shown that the mean square displacement of the walker, that is
the variance, approaches a stationary value in an oscillatory man-
ner for large time delays and in a monotonic way for small ones.
Moreover, this stationary value is a linear function of the delay and
the coefficient of proportionality is a linear function of the transi-
tion probability. In [9], the transition probability towards the origin
was assumed to increase linearly with the distance to the origin up
to the distance above which it was set constant as in the previous
model. It was proved that in the stationary state, the autocorre-
lation function of the position of the walker, ⟨XtXt−τ ⟩, is τ inde-
pendent and ⟨XtXt−u⟩ has an oscillatory behavior as a function of u
for large delays. Continuous (in time and space) analogs of delayed
random walks were analyzed in [9,12,13]. The following Langevin
equation was considered,

dx
dt

= −βx(t − τ) + ξt , (2.1)

where x is a continuous variable denoting the position of the
walker and ξt is a time uncorrelated random shock, that is ⟨ξtξs⟩ =

δ(t − s). In the rigorous presentation, the above equation has the
form of the Itō equation,

dx = −βx(t − τ)dt + dW , (2.2)

where W is the standard Wiener process with the zero expected
value and the unit variance.

In [12], the stationary variance of such a process was calculated,

Var(x) =
1 + sinβτ

2β cosβτ
. (2.3)

For small time delays, the linearization of (2.3) gives us

Var(x) =
1
2β

(1 + βτ). (2.4)

Small-delay expansions and corresponding Fokker–Planck
equations were analyzed in [13,14] where original delay systems
were approximated by non-delayed stochastic differential equa-
tions.

In the following section we take a different approach. To
describe fluctuations in finite systems of objects/individuals,
we model their time evolution by appropriate birth and death
processes. We will discuss simple stochastic models of gene ex-
pression. In our first model, mRNA molecules are produced and
are subject to a time delay degradation. We will compare such a
stochastic process with the delayed random walk described above
and discuss fundamental differences between these two models.
We will show that in the limit of small delays both models are
equivalent and we will re-derive (2.4).

3. Delayed degradation

In the simplest production–degradation system, mRNA mole-
cules are produced and degrade with constant intensities. Let us
denote by x(t) the concentration of mRNAmolecules at time t . The
classical equation of chemical kinetics, i.e. the time evolution of
x(t), then reads:
dx
dt

= k − γ x(t), (3.1)

where k is the intensity of production and γ the intensity of degra-
dation.

Assume now that the degradation process takes some time, that
is molecules are completely degraded τ units of time after the
delayed degradation is triggered. We are tempted to model such a
phenomenon by the following time-delay differential equation [6]:

dx
dt

= k − γ x(t − τ). (3.2)

After a simple change of the variable x, the shift x → x − k/γ ,
we obtain a deterministic term in (2.1).

Delayed randomwalkmodels and Langevin equations like (2.1)
correctly describe real processes if the rate of change of the size of
the population at time t depends on the size of the population at
some earlier time t − τ but there is no change in the population at
time t − τ . We may refer to such models as of social type.

On the contrary, in our production–degradation model, some
molecules undergo a change at time t − τ—they start to degrade,
therefore they cannot be chosen for degradation again so in a sense
they are not active and cannot be taken again into account in
calculating the future rate of change of the size of the population.
The differential equation (3.2) does not take this into account.
Degrading molecules affect the concentration at the future time
and in the meantime they may again take part in another process
of degradation. Therefore they may be subtracted from the system
several times and thismaymake the size of the populationnegative
which is unacceptable in biological models. This is a frequent
problem that solutions of time-delay differential equations with
positive initial conditions may become negative [15].

In [7] we developed a new methodology to deal with time
delays in biological systems. It is based on the division of reactions
into consuming and non-consuming ones [16,17]. We applied it to
simple gene expression models with a delayed degradation. When
amolecule starts to degrade then we consider it inactive (it cannot
take part in another reaction) but it is still in the system and hence
it is visible. Such reactions are called consuming. Let us denote by
x the concentration of active molecules and by y the concentration
of all molecules present in the system. We arrive at the following
equations for x and y:

dx
dt

= k − γ x(t), (3.3)

dy
dt

= k − γ x(t − τ).

Such a system of equations can be easily solved; it does not
exhibit any cyclic behavior [7] as opposed to (3.2) where for some
critical τ the population undergoes the Hopf bifurcation and there
appears a limit cycle [1–5].

In many cases, biochemical processes take place in small vol-
umes and may involve only a few molecules. The deterministic
approach dealing with macroscopic concentrations of molecules
is then inappropriate. A small number of molecules taking part
in gene expression results in significant random fluctuations. To
take into account such fluctuations, many stochastic models in-
volving Master, Fokker–Planck, and Langevin equations were an-
alyzed [18–26] and appropriate birth and death processes were
simulated by the Gillespie algorithm [27].

Stochastic dynamics with time delays were recently inves-
tigated in [6,8,9,12–14,28–32]. In [6], the authors argued that
combined stochasticity and time delay cause oscillations in gene
expression with a delayed degradation.

In [7], we used a generating function approach to Master
equations corresponding to (3.3) and showed that the variance of
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the total number ofmRNAmolecules in the stationary state is equal
to its expected value,
Var(y) = ⟨y⟩ = ⟨x⟩(1 + γ τ), (3.4)
where ⟨x⟩ =

k
γ

is the expected value of the number of active
molecules.

In the limit of small delays, when in the time interval of the
length τ only one reaction can take place, (3.2) correctly describes
both the social and biological delays and we re-derive (3.4) which
is consistent with (2.4).

In the stochastic description of (3.2) we interpret k and γ as
intensities of birth (production) anddeath (degradation) processes.
The state of the system at time t is described by the number of
mRNA molecules, r . Let P(r, t) be the probability that the system
is in the state r at the time t and P(r, t;m, t−τ) the probability that
we have r molecules at time t and m molecules at time t − τ . We
use the standard assumptions of birth and death processes, that
is events in non-overlapping time intervals are independent, the
probability of a reaction is proportional to the length of the time
interval, and the probability of two or more reactions is of a lower
order and we write

P(r, t + h) = khP(r − 1, t) + γ h
∞−

m=0

mP(r + 1, t;m, t − τ)

+ (1 − kh)P(r, t) − γ h
∞−

m=0

mP(r, t;m, t − τ). (3.5)

Now we take P(r, t) into the left-hand side, divide (3.5) by h, take
the limit h → 0 and obtain the following Master equation [33]:
dP(r, t)

dt
= k(P(r − 1, t) − P(r, t))

+ γ

∞−
m=0

mP(r + 1, t;m, t − τ)

− γ

∞−
m=0

mP(r, t;m, t − τ). (3.6)

We introduce the generating function

G(u, t; w, t − τ) =

∞−
r,m=0

f (r, t;m, t − τ)urwm. (3.7)

We differentiate (3.7) with respect to time, use (3.6), then differ-
entiate twice with respect to u, set u = w = 1 and obtain

d⟨r(r − 1)⟩
dt

= 2k⟨r(t)⟩ + 2γ ⟨r(t − τ)⟩ − 2γ ⟨r(t)r(t − τ)⟩. (3.8)

In the stationary state we get

⟨r(t)r(t − τ)⟩ =
k
γ


1 +

k
γ


. (3.9)

We see that the autocorrelation function at the time separation τ
is τ independent. The same result was obtained in the delayed ran-
dom walk in [9].

Nowwe proceed to obtain the formula for the variance of r . We
assume that during the time interval [t − τ , t] only one reaction
can take place. Therefore r(t) can be equal to r(t − τ)+ 1 with the
probability kτ , to r(t − τ)−1 with the probability γ r(t − τ)τ , and
to r(t − τ) with the remaining probability. It follows that

⟨r(t)r(t − τ)⟩ = ⟨r2(t − τ)⟩(1 − γ τ) + kτ ⟨r(t − τ)⟩. (3.10)
We combine (3.9) and (3.10), get an expression for ⟨r2⟩ and

therefore for the variance, expand it in τ , keep only a linear term
and get

Var(r) = ⟨r⟩(1 + γ τ) =
k
γ

(1 + γ τ). (3.11)
We will show now that Var(r) in (3.11) is exactly the same as
in (2.4). The following Langevin equation corresponds to our birth
and death process without a time delay (compare (2.1)):

dx
dt

= k − γ x + σξt . (3.12)

We integrate (3.12) and get
x −

k
γ

2

=


x(0)e−γ t

+ e−γ t
∫ t

0
eγ s (k + σξ(s)) ds −

k
γ

2

.

(3.13)
In the stationary state, that is in the limit t → ∞, from the

above equation we obtain
x −

k
γ

2


=
σ 2

2γ
. (3.14)

On the other hand, we know that Var(x) = ⟨x⟩ =
k
γ
in the birth

and death process, therefore we get

σ 2
= 2k, (3.15)

and finally we see that (2.4) and (3.11) coincide.

4. Gene expression with a delayed degradation

Wenow consider the classical model of gene expression involv-
ing four biochemical processes: transcription, translation, mRNA
and protein degradation [21]:

DNA
kr
−→ mRNA, mRNA

γr
−→ ∅,

mRNA
kp
−→ P, P

γp
−→ ∅.

(4.1)

In the stochastic description, deterministic rates of the above
reactions are interpreted as intensities of corresponding birth and
death processes. The analytical expression for the variance of the
number of protein molecules p in the stationary state was derived
in [21]:

Var(p) = ⟨p⟩

1 +

kp
γr + γp


, (4.2)

where ⟨p⟩ =
kr kp
γrγp

is the expected value of the number of protein
molecules.

As in the previous section, we assume that protein degradation
takes some time and we model it by a single process with the
time delay τ . In [7], the authors used the generating function
approach to Master equations and derived the expected value and
the variance of the number of protein molecules in the stationary
state. Herewe re-derive those results in the small τ limit.Wemight
repeat the procedure from the previous section. Insteadwewill use
directly the methodology developed in [7].

Let r(t) be the number of mRNA molecules, p(t) the number
of active protein molecules at time t, d(t) the number of delayed
protein degradations initiated since the time t = 0, and y(t) the
total number of proteinmolecules related to p(t), d(t), and d(t−τ)
in the following way:
y(t) = p(t) + d(t) − d(t − τ). (4.3)

It is easy to see that in the stationary state we have ⟨(d(t) −

d(t − τ))⟩ = γp⟨p⟩τ . It follows that

⟨y⟩ = ⟨p⟩(1 + γpτ). (4.4)
For the variance of the total number of protein molecules we

write
Var(y(t)) = Var(p(t) + d(t) − d(t − τ))

= Var(p(t)) + Var(d(t) − d(t − τ))

+ 2Cov(p(t)(d(t) − d(t − τ))). (4.5)
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For small time delays, we assume that only one reaction can
take place in any time interval [t − τ , t] and therefore ⟨(d(t) −

d(t − τ))2⟩ = ⟨d(t) − d(t − τ)⟩. Because ⟨d(t) − d(t − τ)⟩2 is of
the order τ 2, then for small τ we get that Var(d(t − τ) − d(t)) =

⟨d(t) − d(t − τ)⟩ = γp⟨p⟩τ .
Now in order to get Var(y)we need to compute Cov(p(t)(d(t)−

d(t − τ))) in the stationary state. For small τ we can write
⟨p(t)(d(t) − d(t − τ))⟩

=

∞−
m=0

mP(d(t) − d(t − τ) = 1|p(t − τ) = m + 1)

× P(p(t − τ) = m + 1)

= γpτ

∞−
m=0

m(m + 1)P(p = m + 1) = γpτ(⟨p2⟩ − ⟨p⟩). (4.6)

Hence we get that

Cov(p(t)(d(t) − d(t − τ))) = ⟨p⟩
kp

γr + γp
γpτ (4.7)

and finally

Var(y) = Var(p)(1 + γpτ) + ⟨p⟩
kp

γr + γp
γpτ . (4.8)

The above formula coincides with the linear approximation of
the variance obtained in [7].

We can repeat the above methodology to re-derive (3.11) for
the simple production–degradation model. In this case Cov(r(t)
(d(t) − d(t − τ))) = 0 and (3.11) follows immediately.

5. Replicator dynamics

The evolution of populations can often be described within
game-theoretic models [34–39]. In such models, players have at
their disposal certain strategies and their payoffs in a game depend
on strategies chosenboth by themandby their opponents. The cen-
tral concept in game theory is that of a Nash equilibrium. It is an
assignment of strategies to players such that no player, for fixed
strategies of his opponents, has an incentive to deviate from his
current strategy—no change can increase his payoff. The dynami-
cal interpretation of Nash equilibria was provided by several au-
thors [40–42]. They proposed a system of difference or differential
replicator equationswhich describe the time-evolution of fractions
of the population playing different strategies. Nash equilibria are
stationary points of such dynamics.

Imagine a finite but a very large population of individuals.
Assume that they are paired randomly to play a symmetric two-
player game with two strategies and the following payoff matrix:

U =

A B
A a b
B c d,

where Ukl, k, l = A, B, is a payoff of the first (row) player when he
plays the strategy k and the second (column) player plays the strat-
egy l. We assume that both players are the same and hence payoffs
of the column player are given by thematrix transposed to U; such
games are called symmetric.

We are interested in fractions of the population playing respec-
tive strategies.We assume that individuals receive average payoffs
with respect to all possible opponents—they play against the aver-
age strategy.

Let ri(t), i = A, B, be the number of individuals playing the
strategy A and B respectively at the time t . Then r(t) = rA(t)+rB(t)
is the total number of players and x(t) =

rA(t)
r(t) is the fraction of the

population playing A at time t .
We assume that during the small time interval ϵ, only an ϵ

fraction of the population takes part in pairwise competitions, that
is plays games. We write
ri(t + ϵ) = (1 − ϵ)ri(t) + ϵri(t)Ui(t); i = A, B, (5.1)

where UA(t) = ax(t)+b(1− x(t)) and UB(t) = cx(t)+d(1− x(t))
are average payoffs of individuals playing A and B respectively. We
assume that all payoffs are not smaller than 0, hence rA and rB are
always non-negative and therefore 0 ≤ x ≤ 1.

The equation for the total number of players reads

r(t + ϵ) = (1 − ϵ)r(t) + ϵr(t)Ū(t), (5.2)

where Ū(t) = x(t)UA(t) + (1 − x(t))UB(t) is the average payoff
in the population at the time t . When we divide (5.1) by (5.2) we
obtain an equation for the frequency of the strategy A,

x(t + ϵ) − x(t) = ϵ
x(t)[UA(t) − Ū(t)]
1 − ϵ + ϵŪ(t)

. (5.3)

Nowwe divide both sides of (5.3) by ϵ, perform the limit ϵ → 0,
and obtain the well known differential replicator equation,

dx(t)
dt

= x(t)[UA(t) − Ū(t)]. (5.4)

The above equation can also be written as
dx(t)
dt

= x(t)(1 − x(t))[UA(t) − UB(t)]

= (a − c + d − b)x(t)(1 − x(t))(x(t) − x∗), (5.5)

where x∗
= (d − b)/(a − c + d − b). We will assume now that

c > a and b > d so x∗ is the unique mixed Nash equilibrium,
globally asymptotically stable in (5.4). We will introduce a time
delay into discrete Eq. (5.1) in two different ways. The main goal
of this section is to demonstrate that the long-time behavior of the
population depends on the particular time-delay mechanism.

5.1. Social-type time delay

Here we assume that individuals at time t replicate due to
average payoffs obtained by their strategies at time t − τ for some
delay τ > 0. The following equations were proposed in [10]:

ri(t + ϵ) = (1 − ϵ)ri(t) + ϵri(t)Ui(t − τ); i = A, B. (5.6)

Then for the total number of players we get

r(t + ϵ) = (1 − ϵ)r(t) + ϵr(t)Ūo(t − τ), (5.7)

where Ūo(t − τ) = x(t)UA(t − τ) + (1 − x(t))UB(t − τ).
Now we proceed as before and get

x(t + ϵ) − x(t) = −ϵx(t)(1 − x(t))[x(t − τ) − x∗
]

×
δ

1 − ϵ + ϵŪo(t − τ)
. (5.8)

The corresponding replicator dynamics in the continuous time
then reads
dx(t)
dt

= x(t)[UA(t − τ) − Ūo(t − τ)] (5.9)

and can also be written as
dx(t)
dt

= x(t)(1 − x(t))[UA(t − τ) − UB(t − τ)]

= −δx(t)(1 − x(t))(x(t − τ) − x∗). (5.10)

The first equation in (5.10) can also be interpreted as follows.
Assume that randomly chosen players imitate randomly chosen
opponents. Then the probability that a player who played Awould
imitate the opponent who played B at time t is exactly x(t)(1 −

x(t)). The intensity of imitation depends on the delayed informa-
tion about the difference of corresponding payoffs at time t − τ .
We will say that such models have a social-type time delay.

Eq. (5.10) is exactly the time-delay replicator dynamics
proposed and analyzed by Tao andWang [43]. They showed that if
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τ < π(c−a+b−d)/2(c−a)(b−d) = τcr , then x∗ is asymptotically
stable.When τ passes through τcr , x∗ becomes unstable. In [10],we
proved directly (i.e. without referring to the theory of time-delay
equations) the following theorem:

Theorem 1. x∗ is asymptotically stable in the dynamics (5.8) if τ is
sufficiently small and unstable for large enough τ .

5.2. Biological-type time delay

Here we assume that individuals born at time t − τ are able
to take part in contests when they become mature at time t or
equivalently they are born τ units of time after their parents played
and received payoffs. The following equations were proposed
in [10]:
ri(t + ϵ) = (1 − ϵ)ri(t) + ϵri(t − τ)Ui(t − τ); i = A, B. (5.11)
Then the equation for the total number of players reads
r(t + ϵ) = (1 − ϵ)r(t) + ϵr(t)

×

[
x(t)rA(t − τ)

rA(t)
UA(t − τ)

+
(1 − x(t))rB(t − τ)

rB(t)
UB(t − τ)

]
. (5.12)

For the frequency of the first strategy we get the equation

x(t + ϵ) − x(t) = ϵ
x(t − τ)UA(t − τ) − x(t)Ū(t − τ)

(1 − ϵ) r(t)
r(t−τ)

+ ϵŪ(t − τ)
, (5.13)

where Ū(t − τ) = x(t − τ)UA(t − τ) + (1 − x(t − τ))UB(t − τ).
The following theorem was proved in [10]:

Theorem 2. x∗ is asymptotically stable in the dynamics (5.13) for any
value of the time delay τ .

We see that large time delays cause oscillations in the social-
type model and in the corresponding biological-type model, the
stationary state does not lose stability for any time delay.

It is important to study the combined effects of stochasticity and
time delays in suchmodels.We hope to present some results in the
near future.

6. Discussion

It is well known that time delays may cause oscillations in solu-
tions of ordinary differential equations. Usually a unique globally
asymptotically stable stationary point loses the stability for large
time delays. More precisely, there exists a critical time delay at
which the systemundergoes theHopf bifurcation and a stable limit
cycle appears. Here we demonstrated that the presence of oscilla-
tions depends on particular causes of a time delay. In particular,
in social-type models, where individuals react to the information
concerning the state of the population at some earlier time, we
should expect oscillations. On the other hand, in biological-type
models, where some physical change already takes place in the
population at an earlier time, oscillations might not be present for
any time delay.

We compared a delayed random walk model (a social-type
model with oscillations) to a corresponding production–degra-
dation model (biological-type model without oscillations). We
derived an analytical expressions for the variance of the number
of protein molecules in a simple model of gene expression with a
small time delay degradation. We also presented two population
dynamics models – evolutionary games – with and without
oscillations.

It is important to studymore complex systemswith timedelays,
especially combined effects of time delays and stochasticity, and in
particular the possibility of stable oscillations in such systems.
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