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Abstract In this paper, we solve the realistic problem of inverse quasi-static steady-state
thermal stresses in a thick circular plate, which is subjected to arbitrary interior temperature
and determine the unknown temperature and thermal stresses on the upper surface of the
thick circular plate, where the fixed circular edge and the lower surface of the circular plate
are thermally insulated using Hankel transform. To achieve our objective, first we construct
a new stable algorithm for numerical evaluation of Hankel transform of order ν > −1. The
integrand r f (r)Jν(pr) consists of a slowly varying component r f (r) and a rapidly oscillat-
ing component Jν(pr). Most of the algorithms proposed in last few decades approximate
the slowly varying component r f (r). In the present paper, we take a different approach
and replace the rapidly oscillating component Jν(pr) in the integrand by its hat functions
approximation. This approach avoids the complexity of evaluating integrals involving Bessel
functions. This leads to a very simple, efficient and stable algorithm for numerical evalua-
tion of Hankel transforms. We further give error and stability analysis and corroborate our
theoretical findings by various numerical experiments.
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Introduction

For the sake of continuity, we give a brief background of the difficulties in numerical eval-
uation of Hankel transform and construct an efficient and stable algorithm for its numerical
evaluation and apply it to solve the realistic problem of inverse quasi-static steady-state ther-
mal stresses in a thick circular plate, which is subjected to arbitrary interior temperature and
determine the unknown temperature and thermal stresses.

The Hankel Transform

The general Hankel transform pair for Bessel function of order ν is defined as [1,2]

Hν[ f (r); p] =
∞∫

0

r f (r)Jν(pr)dr = Fν(p). (1)

Hankel Transform is self reciprocal; its inverse is given by

H−1
ν [Fν(p); r ] =

∞∫

0

pFν(p)Jν(pr)dp = f (r), (2)

where Jν is the ν th-order Bessel function of first kind.
Several quality research articles have been published for the evaluation of Hankel trans-

form. Analytical evaluations of (1) and (2) are rare and their numerical computations are
difficult because of the oscillatory behaviour of the Bessel functions and infinite length of
the interval involved in it. The efficiency of a method for computing HT is highly dependent
on the function to be transformed and thus it is very difficult to choose an optimal algorithm
for given function.

Postnikov [3], proposed for the first time, a novel and powerful method for computing
zero and first order HT by using Haar wavelets. Refining the idea of Postnikov [3], Singh et
al. [4–6] obtained three efficient algorithms for numerical evaluation of HT of order ν > −1.
All these algorithms depend on separating the integrand r f (r) Jν(pr) into two components;
the slowly varying components r f (r) and the rapidly oscillating component Jν(pr). Then
either r f (r) is expanded into various wavelet series using different orthonormal bases like
Haar wavelets, linear Legendre multiwavelets, Fourier Bessel series and truncating the series
at an optimal level or approximating r f (r) by a quadratic over the subinterval using the Filon
quadrature philosophy [7].

In this manuscript, we take an entirely different approach. Instead of manipulating the
simpler component r f (r), we manipulate the rapidly oscillating part Jν(pr), thus avoiding
the complexity of evaluating integrals involving Bessel functions. We use the hat basis func-
tions described in “Hat Functions and Their Associated Properties” section, to approximate
Jν(pr) and replace it by its approximation in Eq. (1), thereby getting an efficient and stable
algorithm for the numerical evaluation of the HT of order ν > −1. In “Algorithm” section,
we derive the algorithm and further give the error and the stability analysis in “Error and
Stability Analysis” section. A numerical experiment to verify our theoretical findings is also
provided in “Error and Stability Analysis” section. In “The Main Result” section, we apply
our proposed algorithm to solve the realistic problem of inverse quasi-static steady-state ther-
mal stresses in a thick circular plate, which is subjected to arbitrary interior temperature and
determine the unknown temperature and thermal stresses on the upper surface of the thick
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circular plate, where the fixed circular edge and the lower surface of the circular plate are
thermally insulated.

Hat Functions and Their Associated Properties

Hat functions are defined on the domain [0, 1] . These are continuous functions with shape of
hats, when plotted on two dimensional plane. The interval [0, 1] is divided into n subintervals
[ih, (i + 1)h] , i = 0, 1, 2, . . . , n − 1, of equal lengths h where h = 1

n . The hat function’s
family of first (n + 1) hat functions is defined as follows [8]:

ψ0 (t) =
{

h−t
h , 0 ≤ t < h,

0, otherwise,
(3)

ψi (t) =

⎧⎪⎪⎨
⎪⎪⎩

t−(i−1)h
h , (i − 1)h ≤ t < ih,

(i+1)h−t
h , ih ≤ t < (i + 1)h, i = 1, 2, . . . , n − 1,

0, otherwise,

(4)

ψn (t) =
{

t−(1−h)
h , 1 − h ≤ t ≤ 1,

0, otherwise.
(5)

From the definition of hat functions it is obvious that

ψi (kh) =
{
1, i = k,

0, i �= k,
(6)

The hat functions ψ j (t) are continuous, linearly independent and are in L2 [0, 1].
A function f ∈ L2[0, 1] may be approximated as

f (t) �
i=n∑
i=0

fiψi (t) = f0ψ0(t) + f1ψ1(t) + f2ψ2(t) + · · · + fnψn(t). (7)

The important aspect of using extended hat functions in the approximation of function f (t),
lies in the fact that the coefficients fi in the Eq. (7), are given by

fi = f (ih), for i = 0, 1, 2 . . . , n where h = 1/n. (8)

Algorithm

To derive the algorithm, we first assume that the domain space of input signal f (r) extends
over a limited region 0 ≤ r ≤ R. From physical point of view, this assumption is reasonable
due to the fact that the input signal f (r) which represents the physical field is either zero
or it has an infinitely long decaying tail out side a disc of finite radius-R. Therefore, in
many practical applications either the input signal f (r) has a compact support or for a given
ε > 0 there exists a positive real R such that

∣∣∫∞
R r f (r)Jν(pr)dr

∣∣ < ε, which is the case if
f (r) = o(rλ), where λ < − 3

2 as r → ∞ . Hence in either case, from Eq. (1), we have

Ĥν[ f (r); p] =
R∫

0

r f (r)Jν(pr)dr ≡ F̂ν(p). (9)
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By scaling (9) may be written as

F̂ν(p) =
1∫

0

r f (r)Jν(pr)dr , (10)

which is known as finite Hankel transform (FHT). Equation (9) is a good approximation of
the HT given by (2). Using Eqs. (7) and (8), Jν(pr) may be approximated as

Jν(pr) �
n∑

i=0

Jν(pih)ψi (r). (11)

Using the approximation in (11), we get the algorithm to evaluate the Hankel transform as

F̂ν(p) �
1∫

0

r f (r)
n∑

i=0

Jν(pih)ψi (r)dr

=
n∑

i=0

Jν(pih)

1∫

0

r f (r)ψi (r)dr

= Jν(0)

h∫

0

r f (r)ψ0(r)dr +
n−1∑
i=1

Jν(pih)

(i+1)h∫

(i−1)h

r f (r)ψi (r)dr

+ Jν(p)

1∫

1−h

r f (r)ψn(r)dr. (12)

It is note worthy here that the integral
∫ 1
0 r f (r)ψi (r)dr appearing in Eq. (12), may be easily

calculated as f (r) is known function and ψi (r) is a linear polynomial ∀i .

Error and Stability Analysis

Let the R.H.S. of (11) is denoted by Jν,n(pr) i.e.

Jν,n(pr) =
n∑

i=0

Jν(pih)ψi (r). (13)

Now replacing Jν(pr) in Eq. (10), we define an nth approximate F̂ν,n(p) of the FHT F̂ν(p)
as follows:

Definition 4.1 An nth approximate finite Hankel transform of f (r), denoted by F̂ν,n(p) is
defined as

F̂ν,n(p) =
∫ 1

0
r f (r)Jν,n(pr)dr =

n∑
i=0

Jν(pih)

∫ 1

0
r f (r)ψi (r)dr . (14)

Let εn(p) denote the absolute error between the FHT F̂ν(p) and its nth approximate F̂ν,n(p),
then we have the following:
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Theorem 4.1 If Jν(pr) is approximated by the family of first (n + 1) hat functions as given
in Eq. (11), then

(i)
∣∣Jν(pjh) − Jν,n(pjh)

∣∣ = 0, for j = 0, 1, 2, . . . , n.

(ii)
∣∣Jν(pr) − Jν,n(pr)

∣∣ ≤ p2

2n2
+O

(
p3

n3

)
, for jh < r < ( j+1)h, j = 0, 1, 2, . . . , n−1.

(iii) εn(p) = ∣∣F̂ν(p) − F̂ν,n(p)
∣∣ ≤ Mp2

4n2
+ O

(
p3

n3

)
, where | f (r)| ≤ M.

Proof See the Appendix 1.
The stability of the proposed algorithm is analyzed under the influence of noise. In what

follows, the exact data function is denoted by f (r) and the noisy data function f α(r) is
obtained by adding a random noise α to f (r) such that f α(r) = f (r) + αθ , where θ is
a uniform random variable with values in [−1, 1] such that | f α(r) − f (r)| ≤ α. Then we
have: 
�

Theorem 4.2 When the input signal f (r) is corrupted with noise α, the proposed algorithm
reduces the noise at least by a factor of 1/2 in the output data F̂ν,n.

Proof See Apendix 2.
A test problem included in this section is solved with and without random perturbations

(noises) to illustrate the efficiency and stability of proposed algorithm by choosing three
different values of noise α as α0 = 0, α1 = 0.002 and α2 = 0.005.

The errors E j (p) (= the approximate FHT obtained from Eq. (12) with random noise
α j−the exact FHT), j = 0, 1, 2 are computed and their graphs are sketched, for different
n. Further the parameter p ranges between 0 to 30 in steps of 0.2. Figure 3 depicts the
graph of

∣∣F̂α
ν,n(p) − F̂ν,n(p)

∣∣ for the test function in example, which is in conformity with
the Theorem 4.2. For this illustration, the computations are done in MATLAB 7.0.1 and
the elapsed times in computations of FHT by CPU for MATLAB codes, are found to be
0.140, 0.593, 4.961 and 69.545 s for n=100, 1000, 10,000 and 100,000 respectively. The
least square errors

∥∥E j (p)
∥∥
2 involved in computations of approximate FHT with noises

α j , j = 0, 1, 2 for the given example with n =10,000, are 1.0554E − 08, 1.0554E − 08
and 1.0554E − 08. These are calculated, using the formula

∥∥E j (p)
∥∥
2 =

√√√√√
n∑

i=0
E2

j (pi )

n + 1
,

where pi is taken in steps of 0.2 in the range [0, 30]. 
�

Example Consider the function f (r) = (
r2 − a2

)2
given in [9], whose zero order finite

Hankel transform is given by F0(p) = 8a
{(
8−a2 p2

)
J1(pa)−4apJ0(pa)

}
p5

.

For numerical computation, we take a = 1 to show comparison between exact HT F0(p)
and nth approximate FHT F̂0,n(p), in Fig. 1. The errors E0(p),E1(p) and E2(p) for n = 100
are shown in Fig. 2. Further Fig. 3 depicts the graph of

∣∣F̂α
0,n

(p) − F̂0,n(p)
∣∣, for noises

α = 0.002, 0.005 and random variable θ = 0.2311. Again it is to be noted here that in the
caption of Fig. 3,

∣∣F̂α
0,n

(p) − F̂0,n(p)
∣∣ is denoted by ∣∣Hα

0 (p) − H0(p)
∣∣.
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Fig. 1 The exact HT F0(p) (solid red line) and approximate HT F̂0,n(p) (dotted line) for n = 100
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Fig. 2 Comparison of errors E0(p), E1(p) and E2(p) for n = 100

The Main Result

This section of the paper deals with the realistic problem of inverse quasi-static steady-state
thermal stresses in a thick circular plate, which is subjected to arbitrary interior tempera-
ture. We apply the algorithm developed in “Algorithm” section, to determine the unknown
temperature and thermal stresses on the upper surface of the thick circular plate, where the
fixed circular edge and the lower surface of the circular plate are thermally insulated. The
formulation of the problem is as follows [9]:
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Fig. 3 Plot of
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We assume the thickness and radius of the circular plate to be 2h and a respectively.
Let the plate be subjected to arbitrary known interior temperature f (r) within the region
−h < z < h.

Under these realistic conditions, the unknown temperature g(r) and quasi-static thermal
stresses due to unknown temperature g(r) at the upper surface of plate z = h are required to
be determined.

The steady-state temperature of the disc satisfies the following heat conduction equation

∂2T (r, z)

∂r2
+ 1

r

∂T (r, z)

∂r
+ ∂2T (r, z)

∂z2
= 0, (15)

with the conditions

∂T (r, z)

∂r
= 0 at r = a,−h ≤ z ≤ h, (16)

∂T (r, z)

∂z
= 0 at z = −h, 0 ≤ r ≤ a, (17)

T (r, z) = f (r) (known) at z = ξ,−h < ξ < h, 0 ≤ r ≤ a, (18)

and

T (r, z) = g(r) (unknown) at z = h, 0 ≤ r ≤ a. (19)

The differential equation governing the displacement potential φ(r, z) is given in [10] as

∂2φ(r, z)

∂r2
+ 1

r

∂φ(r, z)

∂r
+ ∂2φ(r, z)

∂z2
= K τ, (20)

where K is the restraint coefficient and temperature change τ = T − Ti , Ti is the initial tem-
perature. Displacement function is known as Goodier’s thermoelastic displacement potential.

123



616 Int. J. Appl. Comput. Math (2016) 2:609–624

The displacement functions in cylindrical coordinate system are represented by the
Michell’s function defined in [10] as

ur = ∂φ

∂r
− ∂2M

∂r∂z
, (21)

uz = ∂φ

∂z
+ 2(1 − s)∇2M − ∂2M

∂z2
. (22)

The Michell’s function M must satisfy

∇2∇2M = 0, (23)

where

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
. (24)

The component of the stresses are represented by the thermoelastic displacement potential
φ and Michell’s function M as

σrr = 2G

[
∂2φ

∂r2
− K τ + ∂

∂z

(
s∇2M − ∂2M

∂r2

)]
, (25)

σθθ = 2G

[
1

r

∂φ

∂r
− K τ + ∂

∂z

(
s∇2M − 1

r

∂M

∂r

)]
, (26)

σzz = 2G

[
∂2φ

∂r2
− K τ + ∂

∂z

(
(2 − s2)∇2M − ∂2M

∂z2

)]
(27)

and

σr z = 2G

[
∂2φ

∂r∂z
+ ∂

∂r

(
(1 − s)∇2M − ∂2M

∂z2

)]
(28)

where G and s are the shear modulus and Poisson’s ratio, respectively.
For traction free surface the stress functions are

σrr = σr z = 0 at r = a and σzz = σr z = 0 at z = ±h. (29)

Equations (15)–(29) constitute mathematical formulation of the problem.
Using the finite Hankel transform and its inverse transform, Kulkarni and Deshmukh [9]

gave the expression for temperature T as follows:

T (r, z) =
(

2

a2

) ∞∑
n=1

[
f̄ (αn)J0(αnr)

J 20 (αna)

][
cosh [αn(z + h)]

cosh [αn(ξ + h)]

]
, (30)

where f̄ (αn) is the Hankel transform of f (r) and α1, α2, α3, . . . are roots of transcendental
equation J1(αa) = 0. Subsequently the expressions for unknown temperature g(r) at upper
surface z = h, displacements and stresses are given as [9]:
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g(r) =
(

2

a2

) ∞∑
n=1

[
f̄ (αn)J0(αnr)

J 20 (αna)

][
cosh (2αnh)

cosh [αn(ξ + h)]

]
, (31)

ur =
(
2K

a2

) ∞∑
n=1

[
f̄ (αn)J1(αnr)

J 20 (αna)

][
(1 − s) cosh [αn(z + h)]

αn cosh [αn(ξ + h)]

]
, (32)

uz =
(
2K

a2

) ∞∑
n=1

[
f̄ (αn)J0(αnr)

J 20 (αna)

][
(1 − s) sinh [αn(z + h)]

αn cosh [αn(ξ + h)]

]
, (33)

σrr =
(
4KG

a2

) ∞∑
n=1

[
f̄ (αn)J1(αnr)

r J 20 (αna)

][
(1 − s) cosh [αn(z + h)]

αn cosh [αn(ξ + h)]

]
, (34)

σθθ =
(−4KG

a2

) ∞∑
n=1

[
f̄ (αn)

J 20 (αna)

][
αn J0(αnr) − J1(αnr)

r

] [
(1 − s) cosh [αn(z + h)]

αn cosh [αn(ξ + h)]

]
,

(35)

σzz = 0 and σr z = 0.
As an application, let us consider the pair f (r) = (r2 − a2)2, for which the finite Hankel

transform is given as [9]:

f̄ (αn) = 8a
[
(8 − a2α2

n)J1(αna) − 4aαn J0(αna)
]

α5
n

. (36)

For numerical computation, the circular plate of steel (SN 50C) is considered. The parameters
chosen for this application are a = 1m, h = 0.2m. The thermal diffusivity k = 15.9 ×
106(m2s−1) and Poisson ratio s = 0.281. The series in the Eqs. (31–36) are truncated by
taking first 10 positive roots (in increasing order) of transcendental equation J1(αa) = 0,
which are calculated by MATLAB subroutine “fzero” and are given as:

α1 = 3.8317, α2 = 7.0156, α3 = 10.1735, α4 = 13.3237, α5 = 16.4706,

α6 = 19.6159, α7 = 22.7601, α8 = 25.9037, α9 = 29.0468, α10 = 32.1897.

We set A = (−16/102a), B = (16K/102a),C = (32GK/102a) for convenience to
plot the graphs of g(r)/A, ur/B, uz/B, σrr/C and σθθ/C . The expressions for unknown
temperature, displacement and stress components for this particular example are obtained by
replacing f̄ (αn) with F̂0(αn) in Eqs. (31–35). In Eqs. (31–35), instead of exact f̄ (αn) (as
given in Eq. (36)), we use the approximate finite Hankel transform F̂0(αn) obtained by the
proposed algorithm in “Algorithm ” section. For numerical computations of ur , uz, σrr , σθθ

we take z = h/2 and the plots of these quantities are drawn for different values of ξ taken
as ξ = −0.2,−0.1, 0, 0.1 and 0.2m. Further in the all the computations, first 1001 hat basis
functions ϕ0, ϕ1, ϕ2, . . . , ϕ1000 are used for finding approximate value of F̂0 at different αn .
Numerical computations are done in MATLAB and variations of these quantities in radial
directions are shown in the figures with help of MATLAB codes. The findings are discussed
as follows:

In Fig. 4, the unknown temperature g(r)/A is sketched for different ξ . This figure depicts
that for ξ = −0.2 and ξ = −0.1, the tensile and compressive stresses are developed alterna-
tively in the radial direction.

This typical behaviour of oscillatory nature of g(r)/A in case of thick circular plate
diminishes when we take a thin plate of height h = 0.02 m, which is shown in Fig. 5. The
sketch of g(r)/A is shown in different multipliers to differentiate between different curves,
otherwise the curves coincide.
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Fig. 4 The unknown temperature g(r)/A in radial direction (thick plate, h = 0.2m)
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Fig. 5 The unknown temperature g(r)/A in radial direction (thin plate h = 0.02m)

The radial displacement ur/B is plotted in Fig. 6, which shows the normal curve and it
is zero at r = 0 and the circular boundary of the circular plate. Also it develops the tensile
stress in the radial direction.

From Fig. 7, it is evident that the axial displacement uz/B develops tensile stress within
circular region 0 ≤ r ≤ 0.7 and compressive stress in annular region 0.7 ≤ r ≤ 1.

From Fig. 8, it is observed that the radial stress σrr shows compression in the region
0 ≤ r ≤ 0.1, when heat source is near the lower surface (ξ = −0.2). In other positions
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Fig. 7 The displacement function uz/B in radial direction

of heat source, the tensile nature of stress is seen. It is zero at the circular boundary of the
circular plate.

From Fig. 9, the angular stress develops tensile and compressive stresses alternatively in
case when heat source is near the lower surface. In other positions of heat source, the angular
stress develops compressive stresses within circular region 0 ≤ r ≤ 0.5 and tensile stress in
annualar region 0.5 < r ≤ 1 in the radial direction.
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Thus we are able to find the displacement and stress components which occur near heat
source. With an increase in temperature the circular plate will tend to expand in the radial
as well as in axial direction. In the plane state of stress the stress components σzzand σr z are
zero. So it may be considered that due to unknown temperature the circular plate expands in
the axial direction and bends concavely at the centre. This expansion is inversely proportional
to the thickness of the circular plate.
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Conclusions

A new stable and efficient algorithm based on hat functions for the numerical evaluation of
Hankel transform is proposed and analyzed. Replacing the rapidly oscillating part Jν(pr)
with its approximation by hat basis function avoids the complexity of evaluating integrals
involving Bessel functions. This makes the evaluation of HT integral very simple. Choosing
hat functions makes our algorithm attractive in their application in the applied physical
problems as they eliminate the problems connected with the Gibbs phenomenon taking place
in [3,11]. We have given error and stability analysis and by various numerical experiments
have corroborated our theoretical findings. Stability with respect to the data is restored and
excellent accuracy is obtained even for small sample interval and high noise levels in the data.
From the various figures it is obvious that the algorithm is consistent and does not depend on
the particular choice of the input signal. The accuracy and simplicity of the algorithmprovides
an edge over the others. Further, the algorithm is applied to solve the realistic problem of
inverse quasi-static steady-state thermal stresses in a thick circular plate, which is subjected
to arbitrary interior temperature and determine the unknown temperature and thermal stresses
on the upper surface of the thick circular plate, where the fixed circular edge and the lower
surface of the circular plate are thermally insulated. As a special case a mathematical model
is numerically solved for f (r) = (r2−a2)2. The thermoelastic behaviors such as temprature,
displacements and stresses are examinedwith the help of arbitrary known interior temprature.

Appendix 1

Proof of Theoerm 4.1 (i) From Eqs. (13, “Error and Stability Analysis” section) and (6,
“Hat Fucntions and Theri Associated Properties” section), the value of Jν(pr) at j th
nodal point r = jh, j = 0, 1, 2, . . . , n is given by

Jν,n(pjh) =
n∑

i=0

Jν(pih)ψi ( jh) = Jν(pjh)ψ j ( jh) + Jν(pjh + ph)ψ j+1( jh)

= Jν(pjh).

So,
∣∣Jν(pjh) − Jν,n(pjh)

∣∣ = 0, for j = 0, 1, 2, . . . , n.
(ii) Further if r lies between two consecutive integer multiples of h i.e., jh < r < ( j +

1)h, j = 0, 1, 2, . . . , n − 1, then from Eq. (13), we have

Jν,n(pr) = Jν(pjh)ψ j (r) + Jν(pjh + ph)ψ j+1(r)

= Jν(pjh)

[
( j + 1)h − r

h

]

+ Jν(pjh + ph)

[
r − jh

h

]
(using Eqs. (2.1–2.3) of section 2)

= Jν(pjh) − pjh

[
Jν(pjh + ph) − Jν(pjh)

ph

]

+pr

[
Jν(pjh + ph) − Jν(pjh)

ph

]
(37)

As h → 0, from Eq. (37), we obtain

Jν,n(pr) � Jν(pjh) − pjh J ′
ν(pjh) + pr J ′

ν(pjh). (38)
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By expanding Jν(pr) in form of Taylor’s series in the powers of (pr − pjh), we have

Jν(pr) =
∞∑
k=0

(pr − pjh)k

k! J (k)
ν (pjh), (39)

where J (k)
ν (pjh) is the kth order derivative of Jν(pr) w.r.t. pr at r = jh. Using Eqs.

(38) and (39), the error between exact and approximate values of Jν(pr) is given by

Jν(pr) − Jν,n(pr) =
∞∑
k=2

(pr − pjh)k

k! J (k)
ν (pjh)

= (pr − pjh)2

2! J (2)
ν (pjh) + O(pr − pjh)3. (40)

Since (pr − pjh) < ph and nh = 1, from Eq. (40), we get

∣∣Jν(pr) − Jν,n(pr)
∣∣ ≤ p2

2n2
∣∣J ′′

ν (pjh)
∣∣+ O

(
p3

n3

)
. (41)

Since J ′
ν(x) = 1

2

[
Jν−1(x) − Jν+1(x)

]
, we have, J ′′

ν (pjh) = 1
4

[
Jν−2(pjh)−2Jν(pjh)

+ Jν+1(pjh)
]
, and hence

∣∣Jν(pr) − Jν,n(pr)
∣∣ ≤ p2

8n2
|Jν−2(pjh) − 2Jν(pjh) + Jν+1(pjh)| + O

(
p3

n3

)

≤ p2

2n2
+ O

(
p3

n3

)
, as |Jν(pjh)| ≤ 1. (42)

(iii) The absolute error εn(p) between exact FHT F̂ν(p) and its nth approximate F̂ν,n(p),
is given by

εn(p) =
∣∣∣F̂ν(p) − F̂ν,n(p)

∣∣∣ =
∣∣∣∣∣∣

1∫

0

r f (r)
(
Jν(pr) − Jν,n(pr)

)
dr

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
n−1∑
j=0

( j+1)h∫

jh

r f (r)
(
Jν(pr) − Jν,n(pr)

)
dr

∣∣∣∣∣∣∣

≤
n−1∑
j=0

( j+1)h∫

jh

r | f (r)| ∣∣(Jν(pr) − Jν,n(pr)
)∣∣ dr

≤
[
p2

2n2
+ O

(
p3

n3

)] n−1∑
j=0

( j+1)h∫

jh

r | f (r)| dr , (follows from Eq. (6)).

If | f (r)| ≤ M , we have

εn(p) ≤ M

[
p2

2n2
+ O

(
p3

n3

)] n−1∑
j=0

( j+1)h∫

jh

rdr = Mp2

4n2
+ O

(
p3

n3

)
.


�
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Appendix 2

Proof of Theorem 4.2 If the approximate finite Hankel transform of the perturbed function
f α(r) is denoted by F̂α

ν,n(p) then from Eq. (14, “Error and Stability Analysis” section)

F̂α
ν,n(p) =

1∫

0

r f α(r)
n∑

i=0

Jν(pih)ψi (r)dr =
n∑

i=0

Jν(pih)

1∫

0

r f α(r)ψi (r)dr . (43)

From Eqs. (14) and (43), we have

∣∣∣F̂α
ν,n(p) − F̂ν,n(p)

∣∣∣ =
∣∣∣∣∣∣

n∑
i=0

Jν(pih)

1∫

0

r f α(r)ψi (r)dr −
n∑

i=0

Jν(pih)

1∫

0

r f (r)ψi (r)dr

∣∣∣∣∣∣

=
∣∣∣∣∣∣

n∑
i=0

Jν(pih)

1∫

0

r
(
f α(r) − f (r)

)
ψi (r)dr

∣∣∣∣∣∣

≤
n∑

i=0

|Jν(pih)|
1∫

0

r
∣∣( f α(r) − f (r)

)∣∣ |ψi (r)| dr

≤
n∑

i=0

|Jν(pih)|
1∫

0

r |αθ | |ψi (r)| dr

≤
n∑

i=0

1∫

0

r |αθ |ψi (r)dr , as |Jν(pih)| ≤ 1&ψi (r) ≥ 0.

Hence, substituting ψi (r) from Eqs. (3–5, “Hat Functions and Theri Associated Properties”
section), we get

∣∣∣F̂α
ν,n(p)− F̂ν,n(p)

∣∣∣ ≤ |αθ |
⎡
⎢⎣

h∫

0

r
(h − r)

h
dr +

n−1∑
i=1

⎧⎪⎨
⎪⎩

ih∫

(i−1)h

r
(r − (i − 1)h)

h
dr

+
(i+1)h∫

ih

r
((i + 1)h − r)

h
dr

⎫⎬
⎭+

1∫

1−h

r
(r − (1 − h))

h
dr

⎤
⎦

= |αθ |
[
h2

6
+h2

n−1∑
i=1

i+ (3h − h2)

6

]
≤ |α|

2
, (using |θ |≤1 and nh=1).
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